Hostname: page-component-cd9895bd7-mkpzs Total loading time: 0 Render date: 2024-12-27T02:30:43.006Z Has data issue: false hasContentIssue false

Chemical functionalization of carbon nanotubes with aryl diazonium salts

Published online by Cambridge University Press:  20 July 2011

Anastasia A. Golosova
Affiliation:
Wacker-Lehrstuhl für Makromolekulare Chemie, Department Chemie, TU München, Lichtenbergstr. 4, 85747 Garching, Germany.
Christine M. Papadakis
Affiliation:
Wacker-Lehrstuhl für Makromolekulare Chemie, Department Chemie, TU München, Lichtenbergstr. 4, 85747 Garching, Germany.
Rainer Jordan*
Affiliation:
Wacker-Lehrstuhl für Makromolekulare Chemie, Department Chemie, TU München, Lichtenbergstr. 4, 85747 Garching, Germany. Professur für Makromolekulare Chemie, Department Chemie, TU Dresden, Zellescher Weg 19, 01069 Dresden, Germany.
Get access

Abstract

We describe a facile and direct method for the functionalization of single-walled carbon nanotubes with 4’-substituted phenyls and biphenyls. By means of Raman spectroscopy and thermogravimetric analysis we demonstrate that a simple protocol of a direct chemical grafting in acetonitrile solution of the corresponding diazonium salts at room temperature results in a formation of stable aryl monolayers on carbon nanotubes.

Type
Research Article
Copyright
Copyright © Materials Research Society 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1 Dresselhaus, M. S.; Dresselhaus, G.; Jorio, A. Annu. Rev. Mater. Res. 2004, 3, 247.Google Scholar
2 Schaefer, D. W.; Zhao, J.; Brown, J. M.; Anderson, D. P.; Tomlin, D. W.. Chem. Phys Lett. 2003, 375, 369.Google Scholar
3 Burghard, M.; Balasubramanian, K. Small 2005, 1, 180.10.1002/smll.200500257Google Scholar
4a) Bahr, J. L.; Yang, J.; Kosynkin, D. V.; Bronikowski, M. J.; Smalley, R.E.; Tour, J.M. J. Am. Chem. Soc. 2001, 123, 6536.Google Scholar
5 Bahr, J. L.; Tour, J. M. Chem. Mater. 2001, 13, 3823.Google Scholar
6 Dyke, C. A.; Tour, J. M. Nano Lett. 2003, 3, 1215.Google Scholar
7 Kariuki, J.K.; McDermott, M.T. Langmuir 1999, 15, 6534.Google Scholar
8 Abiman, P.; Wildgoose, G. G.; Compton, R. G. Int. J. Electrochem. Sci. 2008, 3, 104.Google Scholar
9 Lud, S. Q.; Steenackers, M.; Jordan, R.; Bruno, P.; Gruen, D. M.; Feulner, P.; Garrido, J. A.; Stutzmann, M. J. Am. Chem. Soc. 2006, 128, 16884.Google Scholar
10 Lud, S. Q., Neppl, S., Richter, G., Bruno, P., Gruen, D. M., Jordan, R., Feulner, P., Stutzmann, M., Garrido, J. A., Langmuir 2010, 26, 15895.Google Scholar
11a) Bachilo, S. M.; Strano, M. S.; Kittrell, C.; Hauge, R. H.; Smalley, R. E.; Weisman, R. B.. Science 2002, 298, 2361; Sauvajol, J. L.; Anglaret, E.; Rols, S.; Alvarez, L. Carbon 2002, 40, 1697. Google Scholar
12 Fantini, C.; Pimenta, M. A.; Strano, M. S.. J.Phys. Chem. C 2008, 112, 13150.Google Scholar
13 Bekyarova, E.; Itkis, M. E.; Ramesh, P.; Berger, C.; Sprinkle, M.; De Heer, W. A.; Haddon, R. C., J. Am. Chem. Soc. 2009, 131, 1336.Google Scholar
14a) Kang, J. F; Ulman, A.; Liao, S.; Jordan, R.; Yang, G.; Liu, G. Y., Langmuir 2001, 17, 95. b) Kang, J. F.; Ulman, A.; Liao, S.; Jordan, R., Langmuir 1999, 15, 2095. c) Kang, J. F.; Ulman, A.; Jordan, R.; Kurth, D. G., Langmuir 1999, 15, 5555. Google Scholar