Hostname: page-component-78c5997874-j824f Total loading time: 0 Render date: 2024-11-04T17:06:13.666Z Has data issue: false hasContentIssue false

Chemical Design of Nanostructured Luminescent Materials

Published online by Cambridge University Press:  01 February 2011

Thierry Gacoin
Affiliation:
Groupe de Chimie du Solide, Laboratoire de Physique de la Matière Condensée, CNRS UMR 7643, École Polytechnique, 91128 Palaiseau Cedex, France.
Arnaud Huignard
Affiliation:
Groupe de Chimie du Solide, Laboratoire de Physique de la Matière Condensée, CNRS UMR 7643, École Polytechnique, 91128 Palaiseau Cedex, France.
Guillaume Counio
Affiliation:
Groupe de Chimie du Solide, Laboratoire de Physique de la Matière Condensée, CNRS UMR 7643, École Polytechnique, 91128 Palaiseau Cedex, France.
Jean-Pierre Boilot
Affiliation:
Groupe de Chimie du Solide, Laboratoire de Physique de la Matière Condensée, CNRS UMR 7643, École Polytechnique, 91128 Palaiseau Cedex, France.
Get access

Abstract

During the last 50 years, there has been a considerable amount of work for the elaboration of efficient luminescent materials, most of them dealing with the search for new chemical compositions. Only a very few studies have concerned the study of the influence of the microstructure of the materials on their properties of emission, especially when the grain sizes of the materials are in the nanometer range. On another side, important advances have been performed in colloid chemistry in the last years, especially in the case of II-VI chalcogenides, as a consequence on the intense activity around the physics of quantum confinement in semiconductors.

The basic idea of this work is to show that the techniques developed in the case of II-VI nanoparticles could find interesting applications for the elaboration of nanostructured luminescent materials. This is first illustrated in the case of pure CdS nanoparticles, whose properties are deeply affected by their surface state and their chemical environment. Incorporation of manganese in solid solution in the CdS particles drastically changes the emission process, which now essentially depends on the manganese content inside each particle. Finally, the extension of the synthesis process to rare earth doped oxide particles is presented, and the luminescence efficiency is discussed as a function of the size, the structure, and the chemical environment of the particles.

Type
Research Article
Copyright
Copyright © Materials Research Society 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Jüstel, T., Nikol, H., Ronda, C., Angew. Chem. Int. Ed.,, 37, 3084 (1998).Google Scholar
2. Blasse, G., Grabmaier, B.C., Luminescent Materials (Springer-Verlag, 1994).Google Scholar
3. Shionoya, S., Yen, W.M., Phosphor Handbook (CRC Press, 1999).Google Scholar
4. Danielson, E., Golden, J.H., McFarland, E.W., Reaves, C.M., Weinberg, W.H., Wu, X.D., Nature,, 389, 944 (1997).Google Scholar
5. Hench, L.L., West, J.K., Chemical Processing of Advanced Materials (Wiley-Interscience, 1992).Google Scholar
6. Herron, N., Wang, Y., Eckert, H., J. Am. Chem. Soc.,, 112, 1322 (1990).Google Scholar
Nosaka, Y., Otha, N., Fukuyama, T., Fujii, N., J. Colloid Interface Sci., 155, 23 (1993).Google Scholar
Fojtik, A., Weller, H., Koch, U., Henglein, A., Ber. Bunsen-Ges. Phys. Chem,, 88, 969 (1984).Google Scholar
Murray, C.B., Norris, D.J., Bawendi, M.G., J. Am. Chem. Soc.,, 115, 8706 (1993).Google Scholar
Lianos, P., Thomas, J.K., Chem. Phys. Lett.,, 125, 299 (1986).Google Scholar
Gacoin, T., Malier, L., Boilot, J.P., J. Mat. Chem., 7, 6, 859 (1997).Google Scholar
7. Gacoin, T., Counio, G., Malier, L., Boilot, J.P., SPIE Proceedings, Sol-gel Optics IV,, 3136, 358365 (1997).Google Scholar
8. Gacoin, T., Malier, L., Boilot, J.P., Chem. Mat.,, 9 (7) 15021504 (1997).Google Scholar
9. Flytzanis, C., Hache, F., Klein, M.C., Ricard, D., Roussignol, P., Progress in Optics XXIX, edited by Wolf, E. (Elsevier Science Publisher B.V., 1991).Google Scholar
10. Bawendi, M.G., Carroll, P.J., Wilson, W.L., Brus, L.E.; J. Chem. Phys., 96 (2) 946 (1992).Google Scholar
Hässelbarth, A., Eychmüller, A., Weller, H.; Chem. Phys. Lett., 203 (2,3) 271 (1993).Google Scholar
11. Kortan, A.R., Hull, R., Opila, R.L., Bawendi, M.G., Steigerwald, M.L., Carroll, P.J., Brus, L.E., J. Am. Chem. Soc.,, 112, 1327 (1990).Google Scholar
Peng, X., Schlamp, M.C., Kadavanich, A.V., Alivisatos, A.P., J. Am. Chem. Soc.,, 119, 7019 (1998).Google Scholar
Audinet, L., Ricolleau, C., Gandais, M., Counio, G., Gacoin, T., Boilot, J.P., Phil. Mag. A,, 79 (10) 2379–2396 (1999).Google Scholar
12. Gaj, J.A., Galazka, R.R., Nawrocki, N., Sol. St. Comm.,, 25, 193 (1978).Google Scholar
13. Counio, G., Esnouf, S., Gacoin, T., Boilot, J.P., J. Phys. Chem.,, 100 (51), 20021 (1996).Google Scholar
Counio, G., Gacoin, T., Boilot, J.P., J. Phys. Chem. B,, 102 (27), 5257 (1998).Google Scholar
14. Schmidt, T., Müller, G., Spahnel, L., kerkel, K., Forchel, A., Chem. Mat.,, 10, 65 (1998).Google Scholar
Riwotzki, K., Haase, M., J. Phys. Chem. B,, 102, 10129 (1998).Google Scholar
15. Huignard, A., Gacoin, T., Boilot, J-P., Chem. Mat., under Press. (2000).Google Scholar