Hostname: page-component-cd9895bd7-jkksz Total loading time: 0 Render date: 2024-12-27T01:39:36.356Z Has data issue: false hasContentIssue false

Chemical Control of Noble Metal Catalysis by Main Group Elements

Published online by Cambridge University Press:  10 February 2011

K. Asakura
Affiliation:
Research Center for Spectrochemistry, Faculty of Science, the University of Tokyo, Hongo, Bunkyo-ku, Tokyo 113–0033, Japan, [email protected]
K. Okumura
Affiliation:
Department of Chemistry, Graduate School of Science, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo 113–0033, Japan, [email protected]
T. Inoue
Affiliation:
Department of Chemistry, Graduate School of Science, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo 113–0033, Japan, [email protected]
T. Kubota
Affiliation:
Department of Chemistry, Graduate School of Science, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo 113–0033, Japan, [email protected]
W-J. Chun
Affiliation:
Department of Chemistry, Graduate School of Science, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo 113–0033, Japan, [email protected]
Y. Iwasawa
Affiliation:
Department of Chemistry, Graduate School of Science, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo 113–0033, Japan, [email protected]
Get access

Abstract

The catalytic interaction of noble metal and main group elements in Rh/one-atomic layer GeO2/SiO2 and Pt/SbOx was investigated. The high temperature reduction produced RhGe and PtSb bimetallic particles in which Pt and Rh were electronically modified to retard catalytic activity. However, unique selective catalyses of Rh/one-atomic layer GeO2/SiO2 for CO hydrogenation reaction to oxygenate compounds and for NO+CO reaction to N2 were found. Under the low temperature reduction of Rh/one-atomic layer GeO2/SiO2 and the high temperature calcination of Pt/SbOx, the oxide phases, GeO2 and SbOx, were stable and the selective reduction of ethylacetate to ethanol and the selective oxidation of iso-C4H10 to methacrolein were observed. The high selectivities were ascribed to synergistic interaction between the noble metals and the main group element oxides through the diffusion of adsorbed species and reaction intermediates. The possibility of chemical control of noble metal-catalyses by main group elements is discussed.

Type
Research Article
Copyright
Copyright © Materials Research Society 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Izumi, Y., Asakura, K., and Iwasawa, Y., J. Catal., 127, 631 (1991).Google Scholar
2. Izumi, Y. and Iwasawa, Y., J. Phys. Chem., 96, 10942 (1992).Google Scholar
3. Tomishige, K., Asakura, K., and Iwasawa, Y., J. Chem. Soc., Chem. Commun., 184 (1993).Google Scholar
4. Tomishige, K., Asakura, K., and Iwasawa, Y., Chem. Lett., 235 (1994).Google Scholar
5. Inoue, T., Tomishige, K., and Iwasawa, Y., J. Chem. Soc. Faraday Trans., 92, 461 (1996).Google Scholar
6. Mansour, A. E., Ferretti, O. A., Basset, J. M., Bournonville, J. P., and Candy, J. P., Angew. Chem. Intern. Ed., 28, 347 (1989).Google Scholar
7. Didillon, B., Candy, J. P., Lepeletier, F., Ferretti, O. A., and Basset, J. M., Stud. Surf. Sci. Catal., 78, 147 (1993).Google Scholar
8. Moro-oka, Y. and Ueda, W., Adv. Catal., 40, 233 (1994).Google Scholar
9. Centi, G. and Trifiro, F., Catal. Rev. Sci. Eng., 28, 165 (1986).Google Scholar
10. Bowker, M., Bicknell, C. R., and Kerwin, P., Appl. Catal., 136, 205 (1996).Google Scholar
11. Nilsson, J., Landacanovas, A., Hansen, S., and Andersson, A., Catal. Today, 33, 97 (1997).Google Scholar
12. Andersson, A., Andersson, S. L. T., Centi, G., Grasselli, R. K., Sanati, M., and Trifiro, F., in Proc. 10th Intern. Congr. Catal. (Budapest, Hungary, 1992), p 691.Google Scholar
13. Weng, L. T., Ruiz, P., and Delmon, B., in New Developments in Selective Oxidation by Heterogeneous Catalysis, edited by Ruiz, P. and Delmon, E.,. (Elsevier, Amsterdam, 1992) p. 399.Google Scholar
14. Weng, L. T., Spitaels, N., Yasse, B., Ladriere, J., Ruiz, P., and Delmon, B., J. Catal., 132, 319 (1991).Google Scholar
15. Okumura, K., Asakura, K., and Iwasawa, Y., J. Mol. Catal., in press.Google Scholar
16. Okumura, K., Asakura, K., and Iwasawa, Y., Langmuir, in press.Google Scholar
17. Inoue, T., Asakura, K., and Iwasawa, Y., J. Catal. in press.Google Scholar
18. Okumura, K., Ichikuni, N., Asakura, K., and Iwasawa, Y., J. Chem. Soc., Faraday Trans., 93, 3217 (1997).Google Scholar
19. Okumura, K., Asakura, K., and Iwasawa, Y., J. Phys. Chem. (1997).Google Scholar
20. Inoue, T., Asakura, K., Li, W., Oyama, S. T., and Iwasawa, Y., Appl. Catal., in press.Google Scholar
21. Okumura, K., Asakura, K., and Iwasawa, Y., Chem. Lett., 985 (1997).Google Scholar
22. Inoue, T., Asakura, K., and Iwasawa, Y., J. Catal., 171, 184 (1997).Google Scholar
23. Asakura, K., Aoki, M., and Iwasawa, Y., Catal. Lett., 1, 395 (1988).Google Scholar
24. Asakura, K. and Iwasawa, Y., J. Phys. Chem., 95, 1711 (1991).Google Scholar
25. Asakura, K., Inukai, J., and Iwasawa, Y., J. Phys. Chem., 96, 829 (1992).Google Scholar
26. Tauster, S. J. and Fung, S. C., J. Catal.,, 55, 29 (1978).Google Scholar
27. Logan, D. A., Braunschweig, E. J., Dayty, A. K., and Smith, D. J., Langmuir, 4, 827 (1988).Google Scholar
28. McManus, J. C and Low, M. J. D., J. Phys. Chem., 72, 2378 (1968).Google Scholar