Hostname: page-component-745bb68f8f-g4j75 Total loading time: 0 Render date: 2025-01-28T23:19:15.507Z Has data issue: false hasContentIssue false

Chemical Bonding and Si-SiO2 Interface Reliability: (A) Minimization of Suboxide Transition Regions, and (B) Monolayer Incorporation of Nitrogen

Published online by Cambridge University Press:  10 February 2011

G. Lucovsky*
Affiliation:
Departments of Physics, Materials Science and Engineering, and Electrical and Computer Engineering, NC State University, Raleigh, NC 27695–8202
Get access

Abstract

This paper addresses two aspects of the chemical bonding arrangements at Si-SiO2 interfaces that impact significantly on electrical performance and reliability of devices with ultrathin gate dielectrics with oxide equivalent thicknesses, toxeq, in the regime of direct tunneling; i.e., toxeq < 3 nm. These are i) minimization of suboxide bonding arrangements that contribute to roughness in an interfacial transition region, and ii) monolayer nitrogen atom incorporation.

Type
Research Article
Copyright
Copyright © Materials Research Society 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Mathiot, D., Straboni, A., Andre, E. and Debenest, P., J. Appl. Phys. 73, 8215 (1993);Google Scholar
Ahn, J., Kim, J., Lo, G.Q. and Kwong, D.-L., Appl. Phys. Lett. 60, 2089 (1992).Google Scholar
2. Lee, D.R., et al., J. Vac. Sci. Technol. A 13, 607 (1995);Google Scholar
Lee, D.R., et al., J. Vac. Sci. Technol. B 13, 1778 (1995).Google Scholar
3. Lucovsky, G. et al., The Physics and Chemistry of SiO2 and the Si-SiO2 Interface, Ed. by Massoud, H.Z., Poindexter, E.H. and Helms, C.R. (Electrochemical Soc., Pennington, 1996), p. 441.Google Scholar
4. Banerjee, A. et al. MRS Symp. Proc. (1996), in press.Google Scholar
5. Hinds, B. et al., MRS Symp. Proc. (1996), in press.Google Scholar
6. Tao, T.-S., Rowe, J.E., Numi, H., Yang, H., Madey, T.E. and Lucovsky, G., V. Vac. Sci. Technol. B 15 (1997) in press.Google Scholar
7. Grunthaner, F.J. and Grunthaner, P.J., Materials Science Reports 1, 65 (1986);Google Scholar
Himpsel, F.J., McFeely, F.R., Taleb-Ibrahimi, A., Yarnoff, J.A. and Hollinger, G., Phys. Rev. B 38, 6084 (1988);Google Scholar
Banaszak-Holl, M.M., Lee, S. and McFeely, F.R., Appl. Phys. Lett. 65, 1097 (1994).Google Scholar
9. Tang, M.-T., Evans-Lutterodt, K.W., Higashi, G.S. and Boone, T., Appl. Phys. Lett. 62, 3144 (1993);Google Scholar
Green, M.L. et al., Appl. Physl Lett. 65, 848 (1994).Google Scholar
10. Gusev, E.P., Lu, H.C., Gustafsson, T. and Garfunkel, E., Phys. Rev. B 52, 1759 (1995).Google Scholar
11. Chen, X. and Gibson, J.M., submitted to Appl. Phys. Lett.Google Scholar
12. Yasuda, T., Ma, Y., Habermehl, S. and Lucovsky, G., Appl. Phys. Lett. 60, 434 (1992).Google Scholar
13. Bjorkman, C.H. et al., J. Vac. Sci. Technol. B 11, 1521 (1993).Google Scholar
14. Chao, S.S. et al., J. Vac. Sci. Tech. A 4, 1574 (1986).Google Scholar
15. Tsu, D.V., Lucovsky, G. and Davidson, B.N., Phys. Rev. B 40, 1795 (1989).Google Scholar
16. Paesler, M.A., Anderson, D.A., Freeman, E.C., Moddel, G. and Paul, W., Phys. Rev. Lett. 41, 1492 (1978).Google Scholar
17. Knights, J.C., Street, R.A. and Lucovsky, G., J. Non-Cryst. Solids 35–36, 279 (1980).Google Scholar
18. Kanemitsu, Y., Uto, H., Masumoto, Y., Masumoto, T., Futagi, T. and Mimura, H., Phys. Rev. B 48, 2827 (1993).Google Scholar
19. Didap, J. et al., in Ref. 2, p. 406.Google Scholar
20. Sakoda, T. et al., Proceedings of ISCSI, Karuizawa, Jpn. (1996).Google Scholar
21. Ross, F.M., Gibson, J.M. and Twesten, R.D., Surf. Sci. 310, 243 (1994).Google Scholar
22. Hahn, P.O. and Henzler, M., J. Vac. Sci. Technol. A 2, 574 (1984).Google Scholar
23. Hauser, J.R., private communicationGoogle Scholar