Hostname: page-component-745bb68f8f-b95js Total loading time: 0 Render date: 2025-01-28T23:37:06.060Z Has data issue: false hasContentIssue false

Chemical Bond Distribution and Short Range Order in Non-Oxide Ciialcogenide Glasses. Results from NMR Spectroscopy

Published online by Cambridge University Press:  22 February 2011

Thomas Tepe
Affiliation:
Department of Chemistry, University of California, Santa Barbara, CA 93106
Carri Lyda
Affiliation:
Department of Chemistry, University of California, Santa Barbara, CA 93106
Michael Tullius
Affiliation:
Department of Chemistry, University of California, Santa Barbara, CA 93106
David Lathrop
Affiliation:
Department of Chemistry, University of California, Santa Barbara, CA 93106
Jason Leone
Affiliation:
Department of Chemistry, University of California, Santa Barbara, CA 93106
Hellmut Eckert
Affiliation:
Department of Chemistry, University of California, Santa Barbara, CA 93106
Get access

Abstract

Solid-state 31p MAS-NMR provides powerful insights into the local order of phosphorus selenide based glasses. Specifically, it allows a quantitative characterization of the melt equilibrium PSe3/2 + Se -> Se=PSe3/2 describing the stability of four-coordinate P atoms. Using this technique, the effect of isovalent substitution by As, and Te, and of other glass constituents Ge and TI on this equilibrium and on the quantitative phosphorus speciation is studied in detail.

Type
Research Article
Copyright
Copyright © Materials Research Society 1994

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1] Taylor, P. C., Mater. Res. Soc. Bull. 1987, 36.Google Scholar
[2] Elliott, S. R., Nature (London) 354, 445 (1991).Google Scholar
[3] Eckert, H., Ber. Bunsenges. 94, 1062, (1990)Google Scholar
[4] Eckert, H., Prog. NMR Spectroscopy 159 (1992).Google Scholar
[5] Lathrop, D. and Eckert, H., Phys. Rev. B 43,7279 (1991).Google Scholar
[6] Lathrop, D. and Eckert, H., J. Phys. Chem, 93, 7958 (1989).Google Scholar
[7] Blachnik, R. and Hoppe, A., Anorg, Z.. AUg. Chem. 457, 91 (1979).Google Scholar
[8] Borisova, Z. U., in Glassy Semiconductors, Plenum Press N.Y. 1981, p. 248.Google Scholar
[9] Kasatkin, B. E., Borisova, Z. U., and Orlova, G. M., Izv. Akad Nauk SSSR Neorg. Mater. 19, 1610 (1974).Google Scholar
[10] Orlova, G. M., Borisova, Z. U., and Mikhailov, M. D., Izv. Akad. Nauk SSSR Neorg. Mater. 9, 1904 (1973).Google Scholar
[11] Maxwell, R. and Eckert, H., J. Am. Chem. Soc. 115,4747 (1993)Google Scholar
[12] Maxwell, R. and Eckert, H., J. Am. Chem. Soc. 116, in press (1994).Google Scholar
[13] Rubinstein, M. and Taylor, P. C., Phys. Rev. B 9, 4258 (1974)Google Scholar
[14] Lathrop, D., Tullius, M., Tepe, T., and Eckert, H., J. Noncryst. Solids 128, 208 (1991).Google Scholar
[15] Lathrop, D. and Eckert, H., J. Noncryst. Solids 160, 111 (1993).Google Scholar
[16] Thorpe, M. F., J. Noncryst. Solids 76, 109 (1985).Google Scholar
[17] Tatsumisago, M., Halfpap, B. L., Green, J. L., Lindsay, S. M., and Angell, C. A., Phys. Rev. Lett. 64, 1549 (1990)Google Scholar
[18] Sreeram, A. N., Swiler, D. R., and Varshneya, A. K., J. Noncryst. Solids 127, 287 (1991).Google Scholar
[19] Zhang, M., Mancini, S., Bresser, W., and Boolchand, P., J. Noncryst. Solids 151, 149 (1992).Google Scholar
[20] Giridhar, A. and Mahadevan, S., J. Noncryst. Solids 151, 245 (1992).Google Scholar
[21] Eckert, H. and Müller-Warmuth, W., J. Noncryst. Solids 70, 199 (1985).Google Scholar