Hostname: page-component-cd9895bd7-q99xh Total loading time: 0 Render date: 2024-12-27T02:37:37.303Z Has data issue: false hasContentIssue false

Chemical and Structural Analysis of Nitridated Sapphire

Published online by Cambridge University Press:  10 February 2011

Y. Cho
Affiliation:
MSME Department, University of California, Berkeley, CA 94720 [email protected]
S. Rouvimov
Affiliation:
MSD, Lawrence Berkeley Laboratory, Berkeley, CA 94720
Y. Kim
Affiliation:
MSME Department, University of California, Berkeley, CA 94720
Z. Liliental-Weber
Affiliation:
MSD, Lawrence Berkeley Laboratory, Berkeley, CA 94720
E. R. Weber
Affiliation:
MSME Department, University of California, Berkeley, CA 94720 MSD, Lawrence Berkeley Laboratory, Berkeley, CA 94720
Get access

Abstract

The incorporation of nitrogen into sapphire substrates during nitridation was studied by xray photoelectron spectroscopy (XPS). An increase in the intensity of nitrogen 1s peak in XPS was observed upon longer nitridation. The surface morphology of the substrates was characterized by atomic force microscopy (AFM). High resolution electron microscopy (HREM) was employed for structural analysis. The cross sectional TEM showed a thin layer of AlN buried between amorphous AlNxO1−x and sapphire. This is the first direct observation of AlN on sapphire. The TEM images show a deeper penetration depth of nitrogen into a longer nitridated sapphire.

Type
Research Article
Copyright
Copyright © Materials Research Society 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Strite, S. and Morkoc, H., J. Vac. Sci. Technol. B 10, 1237 (1992).10.1116/1.585897Google Scholar
2. Nakamura, S., Mukai, T., Senoh, M., Nagahama, S., Iwasa, N., Yamada, T., Matsushita, T., Kiyoku, H. and Sugimoto, Y., Jpn. J. Appl. Phys. 35, L74 (1996).10.1143/JJAP.35.L74Google Scholar
3. Amano, H., Sawaki, N., Akasaki, I., and Toyoda, Y., Appl. Phys. Lett. 48, 353 (1986).10.1063/1.96549Google Scholar
4. Keller, S., Keller, B. P., Wu, Y. F., Heying, B., Kapolnek, D., Speck, J. S.. Mishra, U. K. and Denbaars, S. P., Appl. Phys. Lett. 68, 1525 (1996).10.1063/1.115687Google Scholar
5. Uchida, K., Watanabe, A., Yano, F., Kouguchi, M., Tanaka, T. and Milnagawa, S., J. Appl. Phys. 79, 3487 (1996).10.1063/1.361398Google Scholar
6. Moustakas, T. D., Molnar, R. J., Lei, T., Menon, G. and Eddy, C. R. Jr., Mater. Res. Soc. Symp.Proc. 242, 427 (1992).10.1557/PROC-242-427Google Scholar
7. Heinlein, C. and Grepstad, J., Appl. Phys. Lett. 71, 341 (1997).Google Scholar
8. Anders, A. and Anders, S., Plasma Source Sci. Technol. 4, 571 (1995).10.1088/0963-0252/4/4/008Google Scholar
9. Briggs, D. and Seah, M. P., Practical Surface Analysis, (John Wiley & Sons, Ltd., 1983), pp409415.Google Scholar