Hostname: page-component-cd9895bd7-mkpzs Total loading time: 0 Render date: 2024-12-27T02:05:33.906Z Has data issue: false hasContentIssue false

Charge-Transfer Properties of Dye-Sensitized Solar Cells via Long-Range-Corrected Density Functional Theory

Published online by Cambridge University Press:  01 February 2011

Bryan Matthew Wong*
Affiliation:
[email protected], Sandia National Laboratories, Materials Chemistry Department, Livermore, California, United States
Get access

Abstract

The excited-state properties in a series of solar cell dyes are investigated with a long-range-corrected (LC) functional which provides a more accurate description of charge-transfer states. Using time-dependent density functional theory (TDDFT), the LC formalism correctly predicts a large increase in the excited-state electric dipole moment of the dyes with respect to that of the ground state, indicating a sizable charge separation associated with the S1 ← S0 excitation. The performance of the LC-TDDFT formalism, illustrated by computing excitation energies, oscillator strengths, and excited-state dipole moments, demonstrates that the LC technique provides a consistent picture of charge-transfer excitations as a function of molecular size. In contrast, the widely-used B3LYP functional severely overestimates excited-state dipole moments and underestimates the experimentally observed excitations, especially for larger dye molecules. The results of the present study emphasize the importance of long-range exchange corrections in TDDFT for investigating the charge-transfer dynamics in solar cell dyes.

Type
Research Article
Copyright
Copyright © Materials Research Society 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. O'Regan, B. and Grätzel, M., Nature 414, 338 (1991).Google Scholar
2. Peter, L. M., Phys. Chem. Chem. Phys. 9, 2630 (2007).Google Scholar
3. Hara, K., Sato, T., Katoh, R., Furube, A., Ohge, Y., Shinpo, A., Suga, S., Sayama, K., Sugihara, H., and Arakawa, H., J. Phys. Chem. B 107, 597 (2003).Google Scholar
4. Hara, K., Kurashige, M., Dan-oh, Y., Kasada, C., Shinpo, A., Suga, S., Sayama, K., and Arakawa, H., New. J. Chem. 27, 783 (2003).Google Scholar
5. Hara, K., Wang, Z.-S., Sato, T., Furube, A., Katoh, R., Sugihara, H., Dan-oh, Y., Kasada, C., and Shinpo, A., J. Phys. Chem. B 109, 15476 (2005).Google Scholar
6. Nazeeruddin, M. K., Péchy, P., Renouard, T., Zakeeruddin, S. M., Humphry-Baker, R., Comte, P., Liska, P., Cevey, L., Costa, E., Shklover, V., Spiccia, L., Deacon, G. B., Bigonozzi, C. A., and Grätzel, M., J. Am. Chem. Soc. 123, 1613 (2001).Google Scholar
7. Hagberg, D. P., Edvinsson, T., Marinado, T., Boschloo, G., Hagfeldt, A., and Sun, L., Chem. Commun. 21, 2245 (2006).Google Scholar
8. Liang, M., Xu, W., Cai, F., Chen, P., Peng, B., Chen, J., and Li, Z., J. Phys. Chem. C 111, 4465 (2007).Google Scholar
9. Kurashige, Y., Nakajima, T., Kurashige, S., Hirao, K., and Nishikitani, Y., J. Phys. Chem. A 111, 5544 (2007).Google Scholar
10. Gill, P. M. W., Mol. Phys. 88, 1005 (1996).Google Scholar
11. Savin, A., Recent Developments and Applications of Modern Density Functional Theory, ed. Seminario, J. M. (Elsevier, Amsterdam, 1996), pp. 327354.Google Scholar
12. Wong, B. M. and Cordaro, J. G., J. Chem. Phys. 129, 214703 (2008).Google Scholar
13. Iikura, H., Tsuneda, T., Yanai, T., and Hirao, K., J. Chem. Phys. 115, 3540 (2001).Google Scholar