Hostname: page-component-586b7cd67f-g8jcs Total loading time: 0 Render date: 2024-11-25T17:28:44.405Z Has data issue: false hasContentIssue false

Charge-Transfer Dipoles at the Si-SiO2 Interface and the Metal-Semiconductor Worfunction Difference In Mos Devices.

Published online by Cambridge University Press:  22 February 2011

Hisham Z. Massoud*
Affiliation:
Department of Electrical Engineering, Duke University, Durham, N.C. 27706.
Get access

Abstract

The magnitude of the dipole moment at the Si-SiO2 interface resulting from partial charge transfer that takes place upon the formation of interface bonds has been calculated. The charge transfer occurs because of the difference in electronegativity between silicon atoms and SiO2 molecules which are present across the interface. Results obtained for (100) and (111) silicon substrates indicate that the magnitude of the interface dipole moment is dependent on substrate orientation and the interface chemistry. Dipole moments at the Si-SiO2 and gate-SiO2 interfaces should be included in the definition of the flatband voltage VFB of MOS structures. CV-based measurements of the metal-semiconductor workfunction difference φms on (100) and (111) silicon oxidized in dry oxygen and metallized with Al agree with the predictions of this model. Other types of interface dipoles and their processing dependence are briefly discussed.

Type
Research Article
Copyright
Copyright © Materials Research Society 1988

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Perfetti, P., Quaresima, C., Coluzza, C., Fortunato, C., and Margaritondo, G., Phys. Rev. Lett. 57, 2065 (1986).CrossRefGoogle Scholar
2. Sanderson, R. T., Science 114, 670 (1951).CrossRefGoogle Scholar
3. Grunthaner, F. J. and Grunthaner, P. J., Materials Science Reports 1, 65 (1986).CrossRefGoogle Scholar
4. Sanderson, R. T., Inorganic Chemistry, Reinhold, New York, 1967.Google Scholar
5. Massoud, H. Z., J. Appl. Phys., accepted for publication.Google Scholar
6. See for example Nicollian, E. H. and Brews, J. R., MOS (Metal Oxide Semiconductor) Physics and Technology, John Wiley, New York, 1982.Google Scholar
7. Massoud, H. Z., “Thermal Oxidation of Silicon in Dry Oxygen - Growth Kinetics and Charge Characterization in the Thin Regime,” Tech. Rep. No. G502–1, Stanford Electronics Laboratories, Stanford University, Stanford, CA, June 1983.Google Scholar
8. For a summary see Przewlocki, H. M. in Physics of Semiconductor Devices, Jain, S. C. and Radhakrishna, S., Eds., John Wiley and Sons, New York, 1982.Google Scholar
9. Deal, B. E., Snow, E. H., and Mead, C. A., J. Phys. Chem. Solids 27, 1873 (1966).CrossRefGoogle Scholar
10. Kar, S., Solid-State Electron. 18, 169 (1975).CrossRefGoogle Scholar
11. Haberle, K. and Fröschle, E., J. Electrochem. Soc. 126, 878 (1979).CrossRefGoogle Scholar
12. Werner, W. M., Solid-State Electron. 17, 769 (1974).CrossRefGoogle Scholar
13. Grunthaner, P. J., Hecht, M. H., and Grunthaner, F. G., J. Appl. Phys. 61, 629 (1987).CrossRefGoogle Scholar
14. Ngai, K. L. and White, C. T., J. Appl. Phys. 52, 320 (1981).CrossRefGoogle Scholar
15. Hübner, K., J. Phys. C 17, 6553 (1984).CrossRefGoogle Scholar
16. Bauer, R. S. and Bachrach, R. Z., Appl. Phys. Lett. 37, 1006 (1980).CrossRefGoogle Scholar
17. Hickmott, T. W., J. Appl. Phys. 51, 4269 (1980).CrossRefGoogle Scholar
18. Revitz, M., Raider, S. I., and Gdula, R. A., J. Vac. Sci. Technol. 16, 345 (1979).CrossRefGoogle Scholar