Hostname: page-component-586b7cd67f-gb8f7 Total loading time: 0 Render date: 2024-11-25T17:48:36.797Z Has data issue: false hasContentIssue false

Charge-State Stability and Optical Transitions of Oxygen Impurities in Barium Fluoride Crystal

Published online by Cambridge University Press:  21 February 2011

L. M. Wang
Affiliation:
Pohl Institute of Solid State Physics, Tongji University, Shanghai 200092, P. R., China
L. Y. Chen
Affiliation:
Pohl Institute of Solid State Physics, Tongji University, Shanghai 200092, P. R., China
X. Wu
Affiliation:
Pohl Institute of Solid State Physics, Tongji University, Shanghai 200092, P. R., China
Get access

Abstract

The linear combination of atomic orbital-molecular orbital embedded-cluster is used to investigate the electronic structure and binding energies of small oxygen impurity clustersin the local density theory. Binding energies for substitutional oxygen ions in BaF2 crystal are studied for its 2–, 1–, and 0 charge states. These are used to assess charge-state stability. The energy eigenvalue spectra and optical transitions are obtained by transition state calculations for the oxygen impurities. These results of optical transition calculations obtained are very good and provide a useful interpretation of the ultraviolet-absorption experiments.

Type
Research Article
Copyright
Copyright © Materials Research Society 1994

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1] Lavel, M. et al. , Nucl. Instr. and Meth. A206, 169(1983). A. J. Caffrey, et. al., IEEE Trans. on Nucl. Sci. 33, 230(1986).10.1016/0167-5087(83)91254-1Google Scholar
[2] Majewski, S. et al. , Nucl. Instr. and Meth. A260, 373(1987); P. K. Chakraborty and K. V. Rao., J. of Mater. Sci. 22, 587(1987); A. Murakami, et. al., Nucl. Instr. and Meth. A301, 435(1991).Google Scholar
[3] Low, W. and Ramon, U., Paramagnetic Resonance. ppl67177 Academic Press, New York (1963).Google Scholar
[4] Nakata, R., Kawano, K., Sumita, M. and Hignchi, E., J. Phys. Chem. Solids. 40, 995(1979).10.1016/0022-3697(79)90124-0Google Scholar
[5] Schlafer, H. L. and Gliemann, G., Basic Principles of Ligand Field Theory, Wiley Interscience, New York, 1969.Google Scholar
[6] Ellis, D. E., Benesh, G. A., and Byrom, E., Phys. Rev. B16, 3308(1977). A. Rosen, D. E. Ellis, H. Adachi, and F. W. Averill, J. Chem. Phys. 65, 3629(1976). B. Delley and D. E. Ellis, J.Chem. Phys 76, (1982) 1949.Google Scholar
[7] Poole, R. T., Szaiman, J., Leckey, R.C. G., Jenkin, J. G., and Liesegang, J., Phys. Rev. B12, 5872(1975).Google Scholar
[8] Kantorovich, L. N., Kotomin, E. A., and Shlynger, A. L., Electronic Processes and Defects in Ionic Crystals (Riga., 1985), p 146.Google Scholar
[9] Morin, M., Salahub, D. R., Nour, S., Mehadji, C., and Chermette, I., Cheni. Phys. Lett. 159, 472(1889).Google Scholar
[10] Ichikawa, Konichi, Aita, Osamu, Aoki, Katsuhito, Kamnada, Masao, Tsurni, Kenjiro, Phys. Rev. D345, 3221(1992).10.1103/PhysRevB.45.3221Google Scholar
[11] Chen, L. Y. et al. , GEM TN-92-129, June 1992.Google Scholar