No CrossRef data available.
Article contents
Charge Trapping and Degradation of High Permittivity TiO2 Dielectric Metal-Oxide-Semiconductor Field Effect Transistors
Published online by Cambridge University Press: 03 September 2012
Abstract
Suitable replacement materials for ultrathin SiO2 in deeply scaled MOSFETs such as lattice polarizable films, which have much higher permittivities than SiO2, have bandgaps of only 3.0 to 4.0 eV. Due to these small bandgaps, the reliability of these films as a gate insulator is a serious concern. Ramped voltage, time dependent dielectric breakdown, and capacitance-voltage measurements were done on 190Å layers of TiO2 which were deposited through the metal-organic chemical vapor deposition of titanium tetrakis-isopropoxide. Measurements of the high and low frequency capacitance indicate that virtually no interface states are created during constant current injection stress. The increase in leakage upon electrical stress suggests that uncharged, near-interface states may be created in the TiO2 film near the SiO2 interfacial layer that allow a tunneling current component at low bias.
- Type
- Research Article
- Information
- Copyright
- Copyright © Materials Research Society 1997