No CrossRef data available.
Article contents
Charge transport in ambipolar pentacene thin film transistors
Published online by Cambridge University Press: 02 March 2011
Abstract
Ambipolar organic transistors are technologically interesting because of their potential applications in light-emitting field-effect transistors [1] and complementary-metal-oxide-semiconductor (CMOS) devices by providing ease of design, low cost of fabrication, and flexibility [2]. Although common organic semiconductors show either n- or p-type charge transport characteristic, organic transistors with ambipolar characteristics have been reported recently. In this work, we show that ambipolar transport can be achieved within a single transistor channel using LiF gate dielectric in the transistors with pentacene active layer. This ambipolar behavior can be controlled by the applied source-drain and gate biases. It was found that at low source-drain biases multistep hopping is the dominant conduction mechanism, while in high voltage regimes I-V data fits in Fowler-Nordheim (F-N) tunneling model. From the slope of the F-N plots, the dependency between field enhancement factor and the transition point in conduction mechanism upon gate bias has been extracted. The transition points show more dependency on gate voltage for negative biases compared to the positive biases. While sweeping negative gate voltages from -5 to -20 V, the source-drain voltages change from about 27 to 17 V. On the other hand, for positive gate voltages from 5 to 20 V, the value of the transition point stays at approximately 36 V. In order to further understand the transport mechanisms, new structures with an interface layer between dielectric and active layer have been fabricated and characterized. As expected, a significant decrease in the amount of the source-drain current has been observed after introducing the interface layer.
- Type
- Research Article
- Information
- MRS Online Proceedings Library (OPL) , Volume 1286: Symposium E – Molecular and Hybrid Materials for Electronics and Photonics , 2011 , mrsf10-1286-e11-25
- Copyright
- Copyright © Materials Research Society 2011