Hostname: page-component-78c5997874-t5tsf Total loading time: 0 Render date: 2024-11-09T15:14:14.519Z Has data issue: false hasContentIssue false

Charge Transfer Dynamics in Single-Wall Carbon Nanotubes Mat: In Situ Raman Spectroscopy

Published online by Cambridge University Press:  01 February 2011

S. Gupta*
Affiliation:
Engineering Department, University of Cambridge, Cambridge CB2 1PZ, UK
M. Hughes
Affiliation:
Department of Materials Science and Metallurgy, University of Cambridge, Cambridge CB2 3QZ, UK
A.H. Windle
Affiliation:
Department of Materials Science and Metallurgy, University of Cambridge, Cambridge CB2 3QZ, UK
J. Robertson
Affiliation:
Engineering Department, University of Cambridge, Cambridge CB2 1PZ, UK
*
* Corresponding author, Email address: [email protected]
Get access

Abstract

Carbon nanotubes-based actuator has been investigated using in situ Raman spectroscopy in order to understand the actuation mechanism and to determine associated parameters. We built an actuator from a sheet of single-wall carbon nanotubes (SWNT mat) and studied in several alkali metal (Li, Na, and K) and alkaline earth (Ca) halide solutions. Since Raman can detect changes in C-C bond length: the radial breathing mode (RBM) at ∼190 cm-1 varies inversely with the nanotube diameter and the G band at ∼1590 cm-1 varies with the axial bond length, the variation of bonding was monitored with potential. In addition, the intensities of both the modes vary with either emptying/depleting or filling of the bonding and antibonding states due to electrochemical charge injection. We discuss the variation of intensity/frequency providing valuable information on the dynamics of charge transfer on the SWNT mat surface. We found the in-plane microscopic strain (∼ -0.25%) and the charge transfer per carbon atom (fc ∼ -0.005) as an upper bound for the electrolytes used. It is demonstrated that though the present analyses does comply with the proposition made earlier, but the quantitative estimates of the associated parameters are significantly lower if compared with those of reported values for carbon nanotubes. Moreover, the extent of variation (i.e. coupled electro-chemo-mechanical response) does depend upon the type of counter-ion used. The cyclic voltammetry (CV) is also described briefly.

Type
Research Article
Copyright
Copyright © Materials Research Society 2004

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Banhart, F., Nano Lett. 1, 329 (2001).10.1021/nl015541gGoogle Scholar
2. Kane, C. L. and Mele, E. J., Phys. Rev. Lett. 78, 1932 (1997).10.1103/PhysRevLett.78.1932Google Scholar
3. Baughman, R. H., Cui, C., Zakhidov, A. A., Iqbal, Z., Barisci, J. N., Spinks, G. M., Wallace, G. G., Mazzoldi, A., De Rossi, D., Rinzler, A. G., Jaschinski, O., Roth, S., and Kertesz, M., Science, 284, 1340 (1999).10.1126/science.284.5418.1340Google Scholar
4. Hubner, J. E., et. al. Proc. Roy. Soc. Lond. A 453, 2185 (1997).10.1098/rspa.1997.0117Google Scholar
5. Treacy, M. M. J., Ebbesen, T. W., and Gibson, J. M., Nature, 381, 678 (1996).10.1038/381678a0Google Scholar
6. Ebbesen, T. W., Lezec, H. J., Hiura, H., Bennett, J. W., Ghaemi, H. F., and Thio, T., Nature, 382, 54 (1996).10.1038/382054a0Google Scholar
7. Dresselhaus, M. S. and Dresselhaus, G., in Light Scattering in Graphite Intercalation Compounds, Topics in Applied Physics Series, Vol. 53 edited by Cardona, M. and Güntherodt, G. (Springer-Verlag, Berlin, 1982, p. 3).Google Scholar
8. Gupta, S., Hughes, M., Windle, A. H., and Robertson, J., Diam. and Relat. Materials, (2003) (in Press).Google Scholar
9. Marquardt, D. W., J. Soc. Indis. Appl. Math. 11, 431 (1963).10.1137/0111030Google Scholar
10. Hughes, M., Shaffer, M. S. P., Renouf, A. C., Singh, C., Chen, G. Z., Fray, D. J., and Windle, A. H., Adv. Materials, 14, 382 (2002).10.1002/1521-4095(20020304)14:5<382::AID-ADMA382>3.0.CO;2-Y3.0.CO;2-Y>Google Scholar
11. Claye, A. S., Fischer, J. E., Huffman, C. B., Rinzler, A. G., and Smalley, R. E., Electrochm, J.. Soc. 147, 2845 (2000).Google Scholar
12. Liu, C., Bard, A. J., Wudl, F., Heitz, I., and Heath, J. R., Electrochem. Solid-State Lett. 2, 577 (1999).10.1149/1.1390910Google Scholar
13. Wood, J. R., Frogley, M. D., Meurs, E. R., Prins, A. D., Peijs, T., Dubstan, D. J., and Wagner, H. D., J. Phys. Chem. B 103, 10 388 (1999) and references therein.10.1021/jp992136tGoogle Scholar
14. Rao, A. M., Richter, E., Bandow, S., Chase, B., Eklund, P. C., Williams, K. A., Fang, S., Subbaswamy, K. R., Menon, M., Thess, A., and Smalley, R. E., Science, 275, 187 (1997).10.1126/science.275.5297.187Google Scholar
15. Dresselhaus, M. S. and Eklund, P. C., Adv. Phys. 49, 705 (2000).10.1080/000187300413184Google Scholar
16. Sandler, J., Shaffer, M. S. P., Windle, A. H., Halsall, M. P., Montes-Morán, M. A., Cooper, C. A., and Young, R. J., Phys. Rev. B 67, 035417 (2003) and references therein.10.1103/PhysRevB.67.035417Google Scholar
17. An, C. P., Zardeny, Z. V., Iqbal, Z., Spinks, G., Baughman, R. H., and Zakhidov, A., Synth. Met. 116, 411 (2001).10.1016/S0379-6779(00)00448-3Google Scholar
18. Kavan, L., Rapta, P., Dunsch, L., Bronikowski, M. J., Willis, P., and Smalley, R. E., J. Phys. Chem. 105 B, 10 764 (2001).Google Scholar
19. Bar Cohen, Y. (Ed.), in Electroactive Polymer Actuators as Artificial Muscles – Reality, Potential, and Challenges, SPIE Press (2001).Google Scholar
20. Chan, C. T., Kamitakahara, W. A., Ho, K. M., and Eklund, P. C., Phys. Rev. Lett. 58, 1528 (1987).10.1103/PhysRevLett.58.1528Google Scholar