Hostname: page-component-cd9895bd7-q99xh Total loading time: 0 Render date: 2024-12-27T01:34:39.909Z Has data issue: false hasContentIssue false

Characterizing individual Au25(SG)18 clusters within a nanopore detector

Published online by Cambridge University Press:  19 December 2012

Christopher E. Angevine
Affiliation:
Physics Department, Virginia Commonwealth University, 701 W. Grace St., Richmond, VA 23284, U.S.A.
Nuwan Kothalawala
Affiliation:
Department of Chemistry and Biochemistry, University of Mississippi, University, MS 38677, U.S.A.
Amala Dass
Affiliation:
Department of Chemistry and Biochemistry, University of Mississippi, University, MS 38677, U.S.A.
Joseph E. Reiner
Affiliation:
Physics Department, Virginia Commonwealth University, 701 W. Grace St., Richmond, VA 23284, U.S.A.
Get access

Abstract

Metallic quantum clusters are stable structures that can exhibit many useful properties. Clusters can be ligand stabilized in aqueous environments to expand their usefulness as biosensors. There are some limitations in characterizing the physical and chemical properties of individual water soluble clusters. This report describes initial results of a new approach for detecting and characterizing individual gold nanoclusters (Au25(SG)18) in an aqueous solution with nanopore-based resistive pulse sensing. Here the nanopore is a single alpha hemolysin from Staphylococcus aureus. Clusters that enter through the cis side of the pore (large vestibule) usually create shallow current blockades with a mean residence time of several milliseconds. Clusters that enter through the trans side of the pore (narrow lumen) create deeper blockades that are either very short (∼200 μs), long lived (∼50 ms) or trapped (>10s). The short and long lived blockades yield sufficient statistics to help characterize the clusters and the trapped state events may allow for additional analysis and controlled delivery of individual clusters. We demonstrate the possibility of this additional analysis by performing I-V measurements on individually trapped clusters. These show an optimal voltage for confining a cluster within the pore.

Type
Articles
Copyright
Copyright © Materials Research Society 2012 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Brust, M., Walker, M., Bethell, D., Schiffrin, D. J. and Whyman, R., J. Chem Soc., Chem. Commun. 801 (1994).Google Scholar
Sardar, R., Funston, A. M., Mulvaney, P., and Murray, R. W., Langmuir. 25, 13840 (2009).CrossRefGoogle Scholar
Haruta, M., Kobayashi, T., Sano, H., Yamada, N., Chem. Lett. 16, 405, (1987).CrossRefGoogle Scholar
Albrecht, T., Mertens, S. F. L., and Ulstrup, J., J. Am. Chem. Soc. 129, 9162, (2007).CrossRefGoogle Scholar
Zheng, J., Nicovich, P. R., and Dickson, R. M., Annu. Rev. Phys. Chem. 58, 409, (2007).CrossRefGoogle Scholar
Gonzalez, J. I., Lee, T-Hee, Barnes, M. D., Antoku, Y., and Dickson, R. M., Phys. Rev. Lett. 93, 147402 (2004).CrossRefGoogle Scholar
Jin, R., Eah, S-K and Pei, Y., Nanoscale. 4, 4026, (2012).CrossRefGoogle Scholar
Johnson, B. F. G. and McIndoe, J. S., Coord. Chem. Rev. 200202, 901, (2000).CrossRefGoogle Scholar
Quinn, B. M., Liljeroth, P., Ruiz, V., Laaksonen, T., and Kontturi, K., J. Am. Chem. Soc. 125, 6644 (2003).CrossRefGoogle Scholar
Muhammed, M. A. H. and Pradeep, T., Chem. Phys. Lett. 449, 186, (2007).CrossRefGoogle Scholar
Yang, A., Fa, W., Dong, J., Phys. Lett. A. 374, 4506 (2010).CrossRefGoogle Scholar
Kasianowicz, J. J., Robertson, J. W. F., Chan, E. R., Reiner, J. E., and Stanford, V. M., Ann. Rev. Anal. Chem. 1, 737, (2008)CrossRefGoogle Scholar
Robertson, J. W. F., Rodriguies, C. G., Stanford, V. M., Rubinson, K. A., Krasilnikov, O. V., Kasianowicz, J. J., Proc. Natl. Acad. Sci. USA. 104, 8207, (2007).CrossRefGoogle Scholar
Hornbqlower, B., Coombs, A., Whitaker, R. D., Kolomeisky, A., Picone, S. J., Meller, A., and Akeson, M., Nat. Meth. 4, 315, (2007).CrossRefGoogle Scholar
Reiner, J. E., Kasianowicz, J. J., Nablo, B. J., Robertson, J. W. F., Proc. Natl. Acad. Sci. USA. 107, 12080, (2010).CrossRefGoogle Scholar
Kasianowicz, J. J., Brandin, E., Branton, D., Deamer, D. W., Proc. Natl. Acad. Sci. USA. 93, 13770, (1996).CrossRefGoogle Scholar
Kasianowicz, J. J. and Bezrukov, S. M., Biophys. J. 69, 94, (1995).CrossRefGoogle Scholar
Oukhaled, G., Mathe, J., Biance, A. L., Bacri, L., Betton, J. M., Lairez, D., and Auvray, L., Phys. Rev. Lett. 98, 158101, (2007).CrossRefGoogle Scholar
Astier, Y., Uzun, O., and Stellacci, F., Small, 5, 1273 (2009).CrossRefGoogle Scholar
Song, L., Hobaugh, M. R., Shustak, C., Cheley, S., Bayley, H., and Gouaux, J. E., Science. 274, 1859, (1996).CrossRefGoogle Scholar
Wu, Z. and Jin, R., Nano Lett. 10, 2568 (2010).CrossRefGoogle Scholar
Negishi, Y., Nobusada, K., and Tsukuda, T., J. Am. Chem. Soc. 127, 5261 (2005).CrossRefGoogle Scholar
Noskov, S. Y., Im, W., and Roux, B., Biophys. J. 87, 2299 (2004).CrossRefGoogle Scholar
Butler, T. Z., Gundlach, J. H., and Troll, M., Biophys J. 93, 3229 (2007).CrossRefGoogle Scholar
Restrepo, M. R., Mikhailova, E., Bayley, H., and Maglia, G., Nano Lett. 11, 746, (2011).CrossRefGoogle Scholar
Henrickson, S. E., Misakian, M., Robertson, B., and Kasianowicz, J. J., Phys. Rev. Lett. 85, 3057, (2000).CrossRefGoogle Scholar
Hansen, P. M., Bhatia, V. K., Harrit, N., and Oddershede, L., Nano Lett. 5, 1937, (2005).CrossRefGoogle Scholar
Aksimentiev, A. and Schulten, K., Biophys. J. 88, 3745, (2005).CrossRefGoogle Scholar