Hostname: page-component-745bb68f8f-grxwn Total loading time: 0 Render date: 2025-01-28T23:26:13.648Z Has data issue: false hasContentIssue false

Characterizations Of Zr/Si1-x-yGexCy After Rapid Thermal Annealing

Published online by Cambridge University Press:  10 February 2011

V. Aubry-Fortuna
Affiliation:
Institut d'Electronique Fondamentale, CNRS URA 22, Bât. 220, Université Paris Sud, 91405 Orsay Cedex, France, [email protected]
M. Barthula
Affiliation:
Institut d'Electronique Fondamentale, CNRS URA 22, Bât. 220, Université Paris Sud, 91405 Orsay Cedex, France, [email protected]
F. Meyer
Affiliation:
Institut d'Electronique Fondamentale, CNRS URA 22, Bât. 220, Université Paris Sud, 91405 Orsay Cedex, France, [email protected]
A. Eyal
Affiliation:
Solid-State Institute, Technion, Haifa 32000, Israel
C. Cytermann
Affiliation:
Solid-State Institute, Technion, Haifa 32000, Israel
M. Eizenberg
Affiliation:
Solid-State Institute, Technion, Haifa 32000, Israel
O. Chaix-Pluchery
Affiliation:
LMGP, CNRS UMR 5628, ENSPG, BP75, 38402 St Martin d‘Héres, France
Get access

Abstract

In this work, we have investigated the reaction between Zr and SiGeC alloys after Rapid Thermal anneals performed at 800°C for 5 min. The interactions of the metal with the alloy have been investigated by X-Ray diffraction. Four crystal X-Ray diffraction was also performed to measure the residual strain in the epilayer. The final compound of the reaction is the C49- Zr(Si1-xGex)2 phase. The C49 film contains the same Ge concentration as in the as-deposited Si1-x-yGexCy layer. This suggests that no Ge-segregation occurs during annealing. Only a small strain relaxation is detected in the unreacted SiGe epilayer during the reaction. The addition of C in the epilayer prevents any strain relaxation. These results are in contrast with those observed in systems with Ti and Co, and show that the system Zr-Si-Ge is much more stable. Schottky barrier heights have been also measured: annealing leads to a slight decrease of the barrier without any degradation of the contact. The resistivity of the C49 film is about 80 μΩcm. These results indicate that Zr may be a good candidate for contacts on IV-IV alloys in term of thermal stability.

Type
Research Article
Copyright
Copyright © Materials Research Society 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1] Osten, H.J., Bugiel, E., Zaumseil, P., Appl. Phys. Lett. 64, 3440 (1994).Google Scholar
[2] Warren, P., Mi, J., Overney, F., Dutoit, M., J. Cryst. Growth 157, 414 (1995).Google Scholar
[3] Boucaud, P., Francis, C., Julien, F.H., Lourtioz, J.-M., Bouchier, D., Bodnar, S., Lambert, B., Regolini, J.L., Appl. Phys. Lett. 64, 875 (1994).Google Scholar
[4] Glüick, M., Schüppen, A., Rösler, M., Heinrich, W., Hersener, J., König, U., Yam, O., Cytermann, C., Eizenberg, M., Thin Solid Films 270, 549 (1995).Google Scholar
[5] Aubry, V., Meyer, F., Laval, R., Clerc, C., Warren, P., Dutartre, D., Mat. Res. Soc. Symp. Proc. Vol.320, 299 (1994).Google Scholar
[6] O. Nur, Willander, M., Hultman, L., Radamson, H.H., Hansson, G.V., Sardela, M.R., Greene, J.E., J. Appl. Phys. 78, 7063 (1995).Google Scholar
[7] Aldrich, D.B., Chen, Y.L., Sayers, D.E., Nemanich, R.J., Ashburn, S.P., Öztüirk, M., J. Appl. Phys. 77, 5107 (1995).Google Scholar
[8] Aldrich, D.B., Chen, Y.L., Sayers, D.E., Nemanich, R.J., Ashburn, S.P., Öztürk, M., J. Mat. Res. 10, 2849 (1995).Google Scholar
[9] Wang, Z., Aldrich, D.B., Nemanich, R.J., Sayers, D.E., J. Appl. Phys. 82 (1997) 2342.Google Scholar
[10] Boutarek, N., Madar, R., Appl. Surf. Sci. 73, 209 (1993).Google Scholar
[11] Eyal, A., Brener, R., Beserman, R., Eizenberg, M., Atzmon, Z., Smith, D.J., Mayer, J.W., Appl. Phys. Lett. 69, 64 (1996).Google Scholar
[12] Lyakas, M., Beregovsky, M., Moskowitz, I., Eizenberg, M., Mat. Res. Soc. Symp. Proc. Vol.402, 475 (1996).Google Scholar
[13] Donaton, R.A., Maex, K., Vantomme, A., Langouche, G., Morciaux, Y., Amour, A. St, Sturm, J. C., Appl. Phys. Lett. 70, 1266 (1997).Google Scholar
[14] Aubry-Fortuna, V., Barthula, M., Perrossier, J.-L., Meyer, F., Demuth, V., Strunk, H.P., Chaix-Pluchery, O., accepted for publication in J. Vac. Sci. Technol. B, May/June 98.Google Scholar
[15] Dutartre, D., Warren, P., Provenier, F., Chollet, F., A. Pério, J. Vac. Sci. Technol. A 12, 1009 (1994).Google Scholar
[16] Meyer, F., Mamor, M., Aubry-Fortuna, V., Warren, P., Bodnar, S., Dutartre, D., Regolini, J.L., J. Elect. Mat. 25, 1748 (1996).Google Scholar
[17] Nur, O., Willander, M., Turan, R., Sardela, M.R., Radamson, H.H., Hansson, G.V., J. Vac. Sci. Technol. B 15, 241(1997).Google Scholar
[18] Xiao, X., Sturm, J.C., Parihar, S.R., Meyerhofer, D., Palfrey, S., Shallcross, F.V., IEEE Elec.Dev. Lett. 14, 199 (1993).Google Scholar
[19] Setton, M., van der Spiegel, J., J. Appl. Phys. 70, 193 (1991).Google Scholar