Hostname: page-component-cd9895bd7-p9bg8 Total loading time: 0 Render date: 2024-12-27T01:28:15.730Z Has data issue: false hasContentIssue false

Characterization of Two Electromigration Failure Modes In Submicron Vlsi

Published online by Cambridge University Press:  21 February 2011

Em Atakov
Affiliation:
Digital Equipment Corp., 77 Reed Road, Hudson, MA 01749
JJ. Clement
Affiliation:
Digital Equipment Corp., 77 Reed Road, Hudson, MA 01749
B. Miner
Affiliation:
Digital Equipment Corp., 77 Reed Road, Hudson, MA 01749
Get access

Abstract

Grain-bondary erosion-type voids and transgranular slit-like voids are found to be two competing electromigration failure modes in VLSI interconnects. The effects of interconnect linewidth, microstructure, process variables and stress conditions on the two failure modes were studied.

Type
Research Article
Copyright
Copyright © Materials Research Society 1993

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Sanchez, J.E. Jr, McKnelly, L.T. and Morris, J.W. Jr., J. Electr. Materials 19, 1213 (1990).Google Scholar
2. Ross, C.A., in Materials Reliability Issues in Microelectronics, edited by Lloyd, J.R. et al. (Mater. Res. Soc. Proc. 225, Pittsburgh, PA, 1991), pp. 3546.Google Scholar
3. Blech, I.A., J. Appl. Phys. 47 1203 (1976).CrossRefGoogle Scholar
4. Kinsbron, E., Appl. Phys. Lett., 36 968 (1980).Google Scholar
5. Vaidya, S., Fraser, D., and Sinha, A., in Proc. IEEE International Reliability Physics Symposiurn (IEEE publishers, Las Vegas, 1980), pp. 165170.Google Scholar
6. Fu, Kuan-Yu, J. Appl. Phys. 69 2656 (1991).Google Scholar
7. Cho, J. and Thompson, C., Appl. Phys. Lett. 54 2577 (1989).CrossRefGoogle Scholar
8. Agarwala, B., Attardo, M., and Ingraham, A., J. Appl. Phys. 41 3954 (1970).Google Scholar
9. Lloyd, J. and Kitchin, J., J. Appl. Phys. 69 2117 (1991).Google Scholar
10. Muray, L.P., Rathbun, L.C., and Wolf, E.D., Appl. Phys. Lett. 53 1415 (1988).CrossRefGoogle Scholar
11. Walton, D., Frost, H., and Thompson, C., in Materials Reliability Issues in Microelectronics edited by Lloyd, J.R. et al. (Mater. Res. Soc. Proc. 225, Pittsburgh, PA, 1991), pp. 219224.Google Scholar
12. Atakov, E.M., Clement, J.J., and Miner, B. (in preparation).Google Scholar
13. Black, J.R., Proc. IEEE 57, 1587 (1969).CrossRefGoogle Scholar
14. Dreyer, M.L. and Varker, C.J., Appl. Phys. Lett. 60 1860 (1992).Google Scholar
15. Rose, J.H., Appl. Phys. Lett. 61, 2180 (1992).Google Scholar
16. Sanchez, J. and Amzt, E., in Materials Reliability in Microelectronics II, edited by Thompson, C.V. and Lloyd, J.R. (Mater. Res. Soc. Proc. 265, Pittsburgh, PA, 1992), pp. 131142.Google Scholar
17. Chiang, C. et al. , in Materials Reliability in Microelectronics II. edited by Thompson, C.V. and Lloyd, J.R. (Mater. Res. Soc. Proc. 265, Pittsburgh, PA, 1992), pp. 219230.Google Scholar
18. Hinode, K. et al. , J. Vac. Sci. Technol. B 8,495 (1990).Google Scholar