No CrossRef data available.
Published online by Cambridge University Press: 25 February 2011
Industrial metal catalysts are usually in the form of small metal particles supported on a porous oxide. The typical size of these metal particles ranges between 1.0 and 10.0 nm and it is well known that the particle size and the oxide substrate can affect the catalytic properties of the metal for some important reactions[1]. Previous work with adsorption on small particles has indicated that desorption temperatures[2–4] and the ability to dissociate CO[5,6] can also be affected by the particle size. To further investigate these size and substrate effects, we have examined the adsorption properties of several simple gases on small Pt particles supported on alumina using temperature programmed desorption (TPD). We will show that the desorption curves for CO, H2, and NO on these particles are very similar to curves measured on single crystals.