Hostname: page-component-78c5997874-xbtfd Total loading time: 0 Render date: 2024-11-09T13:01:30.631Z Has data issue: false hasContentIssue false

Characterization of Thermal Annealed Bi Implanted Silica

Published online by Cambridge University Press:  25 February 2011

S. H. Morgan
Affiliation:
Physics Department, Fisk University, Nashville, TN 37208
D. O. Henderson
Affiliation:
Physics Department, Fisk University, Nashville, TN 37208
Z. Pan
Affiliation:
Solid State Division, Oak Ridge National Lab, Oak Ridge, TN 37831
R. H. Magruder III
Affiliation:
Physics Department, Belmont University, Nashville, TN 37212
R. A. Zuhr
Affiliation:
Physics Department, Fisk University, Nashville, TN 37208
Get access

Abstract

Optical and infrared reflection spectra for Bi implanted silica are reported as a function of dose and thermal annealing. A series of high purity silica samples were implanted with Bi ions at an energy of 350 KeV. Doses were 1 × 1016 and 1.0 × 1017ions/cm2 at 5μamps/cm2. The samples were subsequently thermally annealed at 400, 600 and 800 C. The optical absorption from 6.2 to 1.8 eV and infrared reflectance from 5000 to 450 cm”−1 were measured before and after annealing. Effects of thermal annealing are strongly dependent on Bi content.

Type
Research Article
Copyright
Copyright © Materials Research Society 1993

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Lines, M. E., J. Appl Phys. 69 (1991) 6876.CrossRefGoogle Scholar
2. Friberg, S. R. and Smith, P.W., IEEE J. Quantum Electronics, QE-23 (1987) 2089.Google Scholar
3. Vogel, E. M., Weber, M. J. and Krol, D. M., Phys. Chem. of Glasses, 32 (1991) 231.Google Scholar
4. Hall, D. W., Newhouse, M. A., Borrelli, N. F., Dumbaugh, W. H., and Weidman, D. L., Appl Phys. Lett., 54 (1989) 1293.Google Scholar
5. Newhouse, M. A., Weidman, D. L., and Hall, D. W., Opt. Lett., 15 (1990) 1185.CrossRefGoogle Scholar
6. Magruder, R. H. III, Henderson, D. O., Morgan, S. H. and Zuhr, R. A., Mat. Res. Soc. Proc. 235, 383 (1992).CrossRefGoogle Scholar
7. Galeener, F. L. and Lucovsky, G., Phys. Rev. Lett 37 (1976) 1474.Google Scholar
8. Hosono, H., Weeks, R. A., Imagawa, H. and Zuhr, R. A., J. Non-Cryst. Sol. 120, 250 (1990).Google Scholar
9. Arnold, G. W. and Mazzoldi, P., Ion Beam Modification of Insulators, edited by Mazzoldi, P. and Arnold, G. W. (Elsevier Science Publishers, Amsterdam, 1987).Google Scholar
10. Lee, H. J., Henry, C. H., Orlowsky, K. J., Kazarinov, R. F. and Kometane, T. Y., Appl Opt. 27, 4104 (1988).Google Scholar
11. Biersack, J. P. and Haggmark, L. J., Nucl. Inst. and Methods 174, 257 (1980).Google Scholar
12. Magruder, R. H. III, Henderson, D. O., Morgan, S. H. and Zuhr, R. A., J. Non-Cryst. Sol., in press.Google Scholar
13. Perez, A., Treilleux, M., Capra, T. and Griscom, D. L., J. Mater. Res. 2, 910 (1987).Google Scholar
14. Henderson, D. O., Morgan, S. H., Mu, R., Magruder, R. H. III, Anderson, T. S., Wittig, J. E., and Zuhr, R. A., Proc. SPIE 1761, 1992 (In Press). Characterization of Diamond Amorphized by Ion ImplantationGoogle Scholar