Hostname: page-component-586b7cd67f-2brh9 Total loading time: 0 Render date: 2024-11-25T17:42:57.478Z Has data issue: false hasContentIssue false

Characterization of Single-walled Carbon Nanotube Fibers and Correlation with Stretch Alignment

Published online by Cambridge University Press:  01 February 2011

Michelle Chen
Affiliation:
Department of Materials Science and Engineering, University of Pennsylvania, Philadelphia, PA 19104–6272 USA
Csaba Guthy
Affiliation:
Department of Materials Science and Engineering, University of Pennsylvania, Philadelphia, PA 19104–6272 USA
Juraj Vavro
Affiliation:
Department of Materials Science and Engineering, University of Pennsylvania, Philadelphia, PA 19104–6272 USA
John E. Fischer
Affiliation:
Department of Materials Science and Engineering, University of Pennsylvania, Philadelphia, PA 19104–6272 USA
Stéphane Badaire
Affiliation:
Centre de Recherche Paul Pascale-CNRS, Av. Schweitzer, 33600 Pessac France
Cécile Zakri
Affiliation:
Centre de Recherche Paul Pascale-CNRS, Av. Schweitzer, 33600 Pessac France
Philippe Poulin
Affiliation:
Centre de Recherche Paul Pascale-CNRS, Av. Schweitzer, 33600 Pessac France
Vincent Pichot
Affiliation:
Laboratoire de Physique des Solides (UMR CNRS 8502), Bât. 510, Université de Paris Sud, 91405 Orsay France
Pascale Launois
Affiliation:
Laboratoire de Physique des Solides (UMR CNRS 8502), Bât. 510, Université de Paris Sud, 91405 Orsay France
Get access

Abstract

Structural, electrical and thermal methods are applied to characterize single-walled carbon nanotube (SWNT) fibers with post-extrusion stretching as the independent variable. HiPco SWNTs are dispersed in water using sodium dodecyl sulfate (SDS), and then co-extruded with polyvinyl alcohol (PVA)/water through a long syringe into a rotating water/PVA coagulation bath. Partial axial alignment is thereby achieved, and further enhanced by applying tension to the flexible green fibers in the coagulation bath. Our findings include: (1) X-ray diffraction shows that the full width at half maximum (FWHM) of the Bragg peaks decreases from 55 (as-extruded) to less than 30 degrees by 80% elongation. That is, SWNT alignment increases linearly with stretch (up to 80%). (2) In resistivity at room temperature vs. stretch ratio, result shows an initial rapid decrease followed by saturation; essentially all the improvement in electronic transport is obtained once alignment reached 40° FWHM. (3) Annealing in hydrogen at 1000°C is performed to drive out PVA, to improve inter-tube and inter-bundle contacts, and to heal damage on the tube walls. Such annealing is found to increase conductivity by at least 4 orders of magnitude. (4) Below 25 K, resistivity vs. temperature of the annealed fiber is well-represented by Coulomb gap variable range hopping (CG-VRH). It is rationalized that the Coulomb interactions in disordered systems open a gap at the Fermi energy. Above 25 K, the thermal energy is greater than the Coulomb gap, so thermal activation is more probable than correlated electron hops. (5) Finally, a measurable thermal conductivity is observed as stretch alignment increases.

Type
Research Article
Copyright
Copyright © Materials Research Society 2005

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Vigolo, B., Pénicaud, A., Coulon, C., Sauder, C., Pailler, R., Journet, C., Bernier, P. and Poulin, P., Science 290, 1331 (2000).Google Scholar
2. Poulin, P., Vigolo, B. and Launois, P., Carbon 40, 1741 (2002).Google Scholar
3. Ericson, L. M., Fan, H., Peng, H., Davis, V. A., Zhou, W., Sulpizio, J., Wang, Y., Booker, R., Vavro, J., Guthy, C., Parra-Vasquez, A. N. G., Kim, M. J., Ramesh, S., Saini, R. K., Kittrell, C., Lavin, G., Schmidt, H., Adams, W. W., Billups, W. E., Pasquali, M., Hwang, W.-F., Hauge, R., Fischer, J. E. and Smalley, R. E., Science 305, 1447 (2004).Google Scholar
4. Launois, P. and Poulin, P., Encyclopedia of Nanoscience and Nanotechnology 4, 1 (2004).Google Scholar
5. Dalton, A.B., Collins, S., Muňoz, E., Razal, J.M., Ebron, V.H., Ferraris, J.P., Coleman, J.N., Kim, B. G. and Baughman, R.H., Nature 423, 703 (2003).Google Scholar
6. Vigolo, B., Lucas, M., Launois, P., Bernier, P. and Poulin, P., App. Phys. Lett. 81, 1210 (2002).Google Scholar
7. Zhou, W., Vavro, J., Guthy, C., Winey, K.I., Fischer, J.E., Ericson, L.M., Ramesh, S., Saini, R., Davis, V.A., Kittrell, C., Pasquali, M., Hauge, R.H., Smalley, R.E., J. Appl. Phys. 95, 649 (2004).Google Scholar
8. Launois, P., Marucci, A., Vigolo, B., Bernier, P., Derré, A., and Poulin, P., J. Nanosci. Nanotech. 1, 125 (2001).Google Scholar
9. Vavro, J., Kikkawa, J. and Fischer, J. E., Phys. Rev. B (BT8910 in press).Google Scholar
10. Fischer, J. E., Zhou, W., Vavro, J., Llaguno, M. C., Guthy, C., Haggenmueller, R., Casavant, M. J., Walters, D. E. and Smalley, R. E., J. Appl. Physics 93, 2157 (2003).Google Scholar
11. Hone, J., Llaguno, M. C., Biercuk, M., Johnson, A.T., Batlogg, B., Benes, Z. and Fischer, J.E., Applied Physics A 74, 339 (2002).Google Scholar
12. Zhou, W., Ooi, Y. H., Russo, R., Papanek, P., Luzzi, D. E., Fischer, J. E., Bronikowski, M. J., Willis, P.A. and Smalley, R. E., Chem. Phys. Letters 350, 610 (2001).Google Scholar
13. Lucas, M., Vigolo, B., Badaire, S., Le Bolloc'h, D., Marucci, A., Durand, D., Hamilton, M., Zakri, C., Poulin, P. and Launois, P., AIP Conf. Proc. 633, H. Kuzmany, J. Fink, M. Mehring and S. Roth Eds., 579 (2002).Google Scholar
14. Haggenmueller, R., Zhou, W., Fischer, J.E., Winey, K.I., J. Nanosci. Nanotech. 3, 105 (2003).Google Scholar