Hostname: page-component-586b7cd67f-t7czq Total loading time: 0 Render date: 2024-11-29T07:16:30.698Z Has data issue: false hasContentIssue false

Characterization of SinGem Strained Layer Superlattice P-N Junctions

Published online by Cambridge University Press:  25 February 2011

Jesper Engvall
Affiliation:
Dept.of Solid State Physics, University of Lund, Box 118, S-221 00 Lund, Sweden
Janos Olajos
Affiliation:
Dept.of Solid State Physics, University of Lund, Box 118, S-221 00 Lund, Sweden
Hermann G. Grimmeiss
Affiliation:
Dept.of Solid State Physics, University of Lund, Box 118, S-221 00 Lund, Sweden
Hartmut Presting
Affiliation:
Daimler-Benz AG, Research center, Wilhelm-Runge-Str. 11, D-7900 Ulm, Germany
Horst Kibbel
Affiliation:
Daimler-Benz AG, Research center, Wilhelm-Runge-Str. 11, D-7900 Ulm, Germany
Erich Kasper
Affiliation:
Daimler-Benz AG, Research center, Wilhelm-Runge-Str. 11, D-7900 Ulm, Germany
Get access

Abstract

A series of three p-n junctions consisting of ten monolayer strain adjusted SinGem superlattices (Si6Ge4, Si5Ge5, Si4Ge6) has been characterized with respect to Current-Voltage, Capacitance-Voltage and Short Circuit Photocurrent measurements. The samples were grown by MBE with an Antimony surfactant resulting in improved interface sharpness. Superlattice interband transitions were measured by Short Circuit Current spectroscopy and bandgap energies were determined by a fitting procedure. The temperature dependence of the junction capacitance and of the Short Circuit Current indicate a potential barrier for electrons at the superlattice-buffer interface that impedes electron transport from the p-n junction at lower temperatures.

Type
Research Article
Copyright
Copyright © Materials Research Society 1993

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Turton, R. J. and Jaros, M., Mat. Sci. Eng. B 7, 37 (1990)CrossRefGoogle Scholar
2 Usami, N., Fukatsu, S. and Shiraki, Y., Appl. Phys. Lett. 61, 1706, (1992)CrossRefGoogle Scholar
3 Garrett, C.G.B. and Brattain, W.H., Phys. Rev. 99, 376 (1955)CrossRefGoogle Scholar
4 Braun, S. and Grimmeiss, H.G., J. Appl. Phys 44, 2789 (1973)CrossRefGoogle Scholar
5 Macfarlane, G.G. and Roberts, V., Phys. Rev. 97, 1714, (1955)CrossRefGoogle Scholar
6 Turton, R.J., Jaros, M. and Morrison, I., Phys. Rev. B 38, 8397 (1988)CrossRefGoogle Scholar
7 Braunstein, R., Moore, A. R. and Herman, F., Phys. Rev., 109, 695, (1958)CrossRefGoogle Scholar
8 Menczigar, U., Abstreiter, G., Olajos, J., and Grimmeiss, H.G., Phys. Rev. B, 47, 4099, (1993)CrossRefGoogle Scholar
9 Madelung, O. (ed.), Landolt-Bomstein, Numerical Data and Functional Relationships in Science and Technology, Group Ill, Vol 17a, Springer, Berlin, 1982, pp 6667 Google Scholar
10 Olajos, J., Engvall, J., Grimmeiss, H.G., Menczigar, U., Abstreiter, G., Kibbel, H., Kasper, E. and Prestinig, H., Phys. Rev. B, 46, 12 857, (1992)CrossRefGoogle Scholar
11 Hickmott, T.W., Solomon, P.M., Fischer, R. and Morkoc, H., J. Appl. Phys 57, 2844 (1985)CrossRefGoogle Scholar
12 Chang, L. L., Solid State Electronics, 8, 721, (1965)CrossRefGoogle Scholar
13 Menczigar, U., Brunner, J., Friess, E., Gail, M., Abstreiter, G., Kibbel, H., Presting, H. and Kasper, E., Thin Solid Films, 222, 227 (1992)E-MRSCrossRefGoogle Scholar