Hostname: page-component-78c5997874-j824f Total loading time: 0 Render date: 2024-11-04T19:12:05.677Z Has data issue: false hasContentIssue false

The Characterization of Silicon Damaged by Low Energy Argon Ion Etching

Published online by Cambridge University Press:  25 February 2011

C. H. Seager
Affiliation:
Sandia National Laboratories Albuquerque, New Mexico 87185
J. K. G. Panitz
Affiliation:
Sandia National Laboratories Albuquerque, New Mexico 87185
R. G. Pettit
Affiliation:
Sandia National Laboratories Albuquerque, New Mexico 87185
D. K. Brice
Affiliation:
Sandia National Laboratories Albuquerque, New Mexico 87185
Get access

Abstract

We have used a variety of characterization techniques including electron spin resonance (ESR), photothermal deflection spectroscopy (PDS), ellipsometry, and I–V and C-V analysis to study silicon samples damaged by 500–1500 eV Ar ions from a Kaufman ion source. In agreement with our ballistic penetration calculations, PDS and ellipsometry data show that the majority of the lattice damage lies within 40Å of the surface. The ellipsometry results are well modelled as a thin, damage-induced layer of a- Si with a high (4.63) refractive index, while the PDS measurements show an Urbach-like subgap adsorptance tail. In addition to Schottky barrier height alterations produced by Ar bombardment, we also observe marked changes in electrically active dopant densities in boron doped silicon samples. C-V analyses show that these changes extend quite far (1–2 μm) into the sample and are readily removed by a mild (150°C) thermal anneal. Hydrogen, injected from surface adsorbed H2O or hydrocarbons, appears to be the source of these effects. We will also discuss our upper limit estimate of 1013 “dangling bond” spins/cm2 for our damaged samples in light of prior ESR observations on similarly treated surfaces.

Type
Articles
Copyright
Copyright © Materials Research Society 1987

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Hanoka, J. I., Seager, C. H., Sharp, D. J., and Panitz, J. K. G., Appl. Phys. Lett. 42, 618(1983).CrossRefGoogle Scholar
2. Singh, R., Fonash, S. J., Ashok, S., Caplan, P. J., Shappiro, J., Hage-Ali, M., and Ponpon, J. P., J. Vac. Sci. Tech. Al 334(1983).Google Scholar
3. Ashok, S., and Giewont, K., J JAP 24, C5633(1985).Google Scholar
4. Pinto, R. and Babu, R. S., Appl. Phys. Lett. 48, 1427(1986).CrossRefGoogle Scholar
5. Mu, X. C., Fonash, S. J., and Singh, K., Appl. Phys. Lett. 49, 67(1986).Google Scholar
6. Singh, R., Fonash, S. J., Caplan, P., and Poindexter, E., Appl. Phys. Lett. 43, 502(1983).CrossRefGoogle Scholar
7. Davis, R. J., Climent, A., and Fonash, S. J., Nucl. Inst. Methods B7/8, 831(1985).Google Scholar
8. Seager, C. H., Anderson, R. A., and Panitz, J. K. G., to appear in the Journal of Materials Research.Google Scholar
9. Jackson, W. B., Amer, N. M., Boccara, S. C., and Fournier, D., AppI. Opt. 20, 1333(1981).Google Scholar
10. Seager, C. H. and Land, C. E., Appl. Phys. Lett. 45, 395(1984).CrossRefGoogle Scholar
11. McCrackin, F. L., N.B.S. Technical Note 479 (Apr., 1969).Google Scholar
12. Sharp, D. J., Panitz, J. K. G., and Mattox, D. M., J. Vac. Sci. Technol 16, 1879(1979).Google Scholar
13. Larrabee, G. B., Heinein, K. G., and Harrell, S. A., J. Electrochem. Soc. 114, 867(1967).CrossRefGoogle Scholar
14. Crowder, B. L., Title, R. S., Brodsky, M. H., and Pettit, C. D., Appl. Phys. Lett. 16, 205(1970).Google Scholar
15. McGill, T. C., Kurtin, S. L., and Shifrin, G. A., JAP 41, 246(1970).Google Scholar
16. Paulson, W. M., Wilson, S. R., White, C. W., and Appleton, B. R., Mat. Res. Soc. Symp. Proc. 14, 523 (1983).Google Scholar
17. Driss-Khodja, H., Gheorghiu, A., and Theye, M. L., Optics Comm. 55, 169(1985).CrossRefGoogle Scholar
18. Biersack, J. P. and Haggmark, L. G., Nucl. Instr. and Meth. 174, 257(1980).CrossRefGoogle Scholar
19. Brice, D. K., submitted to Nucl. Instr. and Meth. B.Google Scholar
20. Matsunami, N., Yamamura, Y., Itikawa, Y., Itoh, N., Kazumata, Y., Miyigawa, S., Morita, K., Shimizu, R., and Tawara, H., Institute of Plasma Physics Report IPPJ-AM-32, September 1983, Nagoya University, Nagoya, Japan.Google Scholar
21. Blank, P. and Wittmaak, K., J. Appl. Phys. 50, 1519(1979).Google Scholar
22. Kirschner, J. and Etzkorn, H. W., Appl. Phys. A29, 133(1982).CrossRefGoogle Scholar
23. Winterbon, K. B., Sigmund, P. and Sanders, J. B., Kgl. Danske Vid. Selsk. Mat-Fys Medd. 37, No. 14(1970).Google Scholar
24. Grusell, E., Berg, S., and Anderson, L. P., J. Electrochem. Soc. 127, 1573(1980).Google Scholar
25. See for Example: Tersoff, J., Phys. Rev. Lett. 52, 465(1984).Google Scholar
26. Dersch, H., Stuke, J., and Beichler, J., Phys. Stat. Solidi (6) 105, 265(1981).Google Scholar
27. Tkachev, V. D., Mudryi, A. V., and Minaev, N. S., Phys. Status Solidi A81, 313(1984).CrossRefGoogle Scholar
28. Davis, R. J., Habermeier, H.-U., and Weber, J., Appl. Phys. Lett. 47, 1295(1985).CrossRefGoogle Scholar
29. Hellings, G. J. A., Straayer, A., and Kipperman, A. H. M., J. Appl. Phys. 57, 2067(1985).Google Scholar
30. Johnson, N. M., Herring, C. and Chadi, D. J., Phys. Rev. Lett. 56, 769(1986).Google Scholar
31. Pankove, J. I., Carlson, D. E., Berkeyheiser, J. E. and Wance, R. O., Phys. Rev. Lett. 51, 2224(1983).Google Scholar
32. Pankove, J. I., Wance, R. O. and Berkeyheiser, J. E., Appl. Phys. Lett, 45 1100(1984).Google Scholar
33. Pankove, J. I., Magee, C. W. and Wance, R. O., Appl. Phys. Lett. 47, 748(1985).Google Scholar
34. Tavendale, A. J. and Williams, A. A., Appl. Phys. Lett. 48, 590(1986).Google Scholar
35. Johnson, N. M., Appl. Phys. Lett. 47, 874(1986).Google Scholar
36. Tavendale, A. J., Alexiev, D. and Williams, A. A., Appl. Phys. Lett. 47, 316(1985).Google Scholar
37. Johnson, N. M., Phys. Rev. B31, 5525(1985).Google Scholar
38. Jackson, W. B. and Amer, N. M.. Phys. Rev. B25, 5559 (1982).Google Scholar
39. Seager, C. H., Lenahan, P. M., Brower, K. L. and Mikawa, R., J. Appl. Phys. 58, 2704(1985).Google Scholar
40. See for instance, Ph.D dissertation, Askew, T. M., University of Illinois at Urbana-Champaign, 1984.Google Scholar