Hostname: page-component-586b7cd67f-t7czq Total loading time: 0 Render date: 2024-11-29T09:41:13.288Z Has data issue: false hasContentIssue false

Characterization Of SiC Films Deposited By Laser Ablation Technique For X-Ray Membranes

Published online by Cambridge University Press:  15 February 2011

M.A. El Khakani
Affiliation:
INRS-Energie et Matériaux, C.P. 1020, Varennes, Québec, Canada J3X 1S2
M. Chaker
Affiliation:
INRS-Energie et Matériaux, C.P. 1020, Varennes, Québec, Canada J3X 1S2
S. Boily
Affiliation:
INRS-Energie et Matériaux, C.P. 1020, Varennes, Québec, Canada J3X 1S2
A. Papadopoullos
Affiliation:
INRS-Energie et Matériaux, C.P. 1020, Varennes, Québec, Canada J3X 1S2
Y. Huai
Affiliation:
INRS-Energie et Matériaux, C.P. 1020, Varennes, Québec, Canada J3X 1S2
A. Jean
Affiliation:
INRS-Energie et Matériaux, C.P. 1020, Varennes, Québec, Canada J3X 1S2
Get access

Abstract

Laser Ablation Deposition (LAD) technique was used to produce hydrogen-free SiC films on (100) Si substrate. Deposition temperatures of 300°C and 450°C were investigated. The Si2p and C1s. core levels and the Si-C absorption band of the a-SiC LAD films were characterized by using X-ray Photoelectron Spectroscopy (XPS) and Fourier-Transform Infra Red (FTIR) absorption spectroscopy, respectively. The high compressive stress of the as-deposited SiC films was released and controlled by means of rapid thermal annealing. A correlation between the stress evolution and the Si-C bond density of the annealed films is pointed out. Optical transmission and mechanical properties (stress, Young's modulus) measurements were carried out on the free-standing membranes fabricated from SiC LAD films. The effect of the deposition temperature on the SiC membrane properties is discussed.

Type
Research Article
Copyright
Copyright © Materials Research Society 1993

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Heuberger, A., J. Vac. Sci. Technol. B6(1), 107 (1988).Google Scholar
2. Oda, M., Ohkubo, T., Ozawa, A., Ohki, S., Kakuchi, M., Yoshihara, H., Microlectron. Eng. 11, 241 (1990).CrossRefGoogle Scholar
3. Shimkunas, A.R., Mauger, P.E., Bourget, L.P., Post, R.S., Smith, L., Davis, R.F., Wells, G.M., Cerrina, F., McIntosh, R.B., J. Vac. Sci. Technol. B9(6), 3258 (1991).Google Scholar
4. Chaker, M., Boily, S., Diawara, Y., Khakani, M.A. El, Gat, E., Jean, A., Lafontaine, H., Pépin, H., Voyer, J., Kieffer, J.C., Haghiri-Gosnet, A.M., Ladan, F.R., Ravet, M.F., Chen, Y., Rousseaux, F., J. Vac. Sci. Technol. B10(6), 3191 (1992).CrossRefGoogle Scholar
5. Windishman, H., J. Vac. Sci. Technol. A9(4), 2459 (1991).Google Scholar
6. Wells, G.M., Palmer, S., Cerrina, F., Prudes, A., Gnade, B., J. Vac. Sci. Technol. B8, 1575 (1990).Google Scholar
7. Jean, A., Chaker, M., Diawara, Y., Leung, P.K., Gat, E., Mercier, P.P., Pépin, H., Gujrathi, S., Ross, G.G., Kieffer, J.C., J. Appl. Phys. 72(7), 3110 (1992).CrossRefGoogle Scholar
8. Khakani, M.A. El, Chaker, M., Jean, A., Boily, S., Kieffer, J.C., O'Hem, M.E., Ravet, M.F., Rousseaux, F., to be published in J. Mater. Res. (1993).Google Scholar
9. Boily, S., Chaker, M., Pépin, H., Kerdja, T., Voyer, J., Jean, A., Kieffer, J.C., Leung, P., Ceerina, F., Wells, G., J.Vac. Sci. Technol. B9(6), 3254 (1991).CrossRefGoogle Scholar
10. Tench, R.J., Balooch, M., Connor, A.L., Bernardez, L., Olson, B., Allen, M.J., Siekhaus, W.J., Olander, D.R., Mat. Res. Symp. Proc., Vol.191, 61 (1990).Google Scholar
11. Rimal, L., Ager, R., Logothetis, E.M., Weber, W.H., Hangas, H., Appl. Phys. Lett. 59(18), 2266 (1991).Google Scholar
12. Mizokawa, Y., Geib, K.M., Wilmsen, C.W., J. Vac. Sci. Technol. A 4(3), 1696 (1986).CrossRefGoogle Scholar
13. Glang, R., Holmwood, R.A., Rosenfeld, R.L., Rev. Scien. Instr. 36(1), 7 (1965).CrossRefGoogle Scholar
14. Gat, E., Khakani, M.A. El, Chaker, M., Jean, A., Boily, S., Pépin, H., Kieffer, J.C., Durand, J., Gros, B., Rousseaux, F., Gujrathi, S., J. Mater. Res. 7(9), 2478 (1992).Google Scholar
15. Zhang, Z., Qi, M., Chen, J., Cheng, R., J. Non-Crystall. Sol. 114, 510 (1989).Google Scholar
16. Jean, A.. Khakani, M.A. El, Chaker, M., Gat, E., Dodier, J., Papadopoullos, A., Lafontaine, H., épin, H., Kieffer, J.C., Ravet, M.F., Madouri, A., Bourneix, J., Rousseaux, F., Gujrathi, S.C., to be published in Can. J. Phys. (1993).Google Scholar
17. Beams, J.W., in “Structure and Properties of Thin Films”, edited by Neugebauer, C.A., Newkirk, J.B. and Vermilyea, D.A. (John Wiley and Sons, New York, 1959), p. 183.Google Scholar
18. Moel, A., Chu, W., Early, K., Ku, Y.C., Moon, E.E., Tsai, F., Smith, H.I., Schattenburg, M.L., Fung, C.D., Griffith, F.W., Haas, L.E., J. Vac. Sci. Technol. B9(6), 3287 (1991).CrossRefGoogle Scholar
19. Bullot, J., Schmidt, M.P., Phys. Stat. Sol. (b) 143, 345 (1987).CrossRefGoogle Scholar
20. Blouin, M., Guay, D., Khakani, M.A. El, Chaker, M., Boily, S., Jean, A., to be published.Google Scholar