Published online by Cambridge University Press: 15 March 2011
High-resolution X-ray diffraction is one of the most powerful and widely used techniques for accurate characterization of the lattice parameters, mismatch, alloy composition, dopant concentrations, and thickness of epitaxial materials. In this presentation, we use a series of advanced X-ray diffraction techniques, including double-axis diffraction, triple-axis diffraction, reciprocal space mapping (RSM), and synchrotron white beam X-ray topography, to characterize highly nitrogen-doped homoepitaxial 4H-SiC epilayers. Measurements reported in this work have determined that in single crystal 4H-SiC, increasing the nitrogen doping level above 4 × 1017 cm#x2212;3 results in corresponding increase in lattice contraction. The increase in epilayer/mismatch mismatch with doping, and the corresponding strain energy, is attributed to the substitutional nitrogen incorporated preferentially in the host carbon sites of the 4H-SiC epilayer. Also, significant lattice tilts, generally along the [1120] offcut direction (8°), exist, which are believed to be induced by the Nagai epitaxial tilt.