Hostname: page-component-586b7cd67f-tf8b9 Total loading time: 0 Render date: 2024-11-25T15:23:51.551Z Has data issue: false hasContentIssue false

Characterization of Retention Phenomena of Micron-Size Electrical Domains in Pzt Thin Films

Published online by Cambridge University Press:  10 February 2011

Seungbum Hong
Affiliation:
Electronic and Optical Materials Lab., Korea Advanced Institute of Science and Technology, Taejon 305–701, Korea, [email protected]
Hyunjung Shin
Affiliation:
Micro Systems Lab., Samsung Advanced Institute of Technology, P. O. Box 111, Suwon 440–600, Korea
Y. Eugene Pak
Affiliation:
Micro Systems Lab., Samsung Advanced Institute of Technology, P. O. Box 111, Suwon 440–600, Korea
Kwangsoo No
Affiliation:
Electronic and Optical Materials Lab., Korea Advanced Institute of Science and Technology, Taejon 305–701, Korea, [email protected]
Get access

Abstract

The retention phenomena of purposely aligned micron-size domains (defined as “bits”) in Pb(Zr,Ti)O3 thin films were characterized by atomic force microscopy (AFM) combined with a lock-in amplifier. It is found that the retention loss occurs by “region by region” showing local variation of the rate of the loss. Furthermore, the total retention loss can be successfully described by an extended exponential decay, which implies a narrow distribution of the relaxation times of the domains. This probably comes from the fact that the micron-size bits consist a few hundreds of domains. Along with the characterization, the effects of the bit size and the poling time per unit area on the retention characteristics were investigated. Based on our observations, it is concluded that the retention time is proportional to both the poling time per unit area and the bit size. This trend is successfully explained by a kinetic model developed by our group.

Type
Research Article
Copyright
Copyright © Materials Research Society 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Hidaka, T., Maruyama, T., Sakai, I., Saitoh, M., Wills, L. A., Hiskes, R., Dicarolis, S. A., Amano, Jun, and Foster, C. M., Integrated Ferroelectrics 17, p. 319 (1997).10.1080/10584589708013006Google Scholar
2. Gruverman, A., Tokumoto, H., Prakash, A. S., Aggarwal, S., Yang, B., Wuttig, M., Ramesh, R., Auciello, O., Venkatesan, T., Appl. Phys. Lett. 71(24), 3492 (1997).10.1063/1.120369Google Scholar
3. Shulze, W. A. and Ogino, K., Ferroelectrics 87, 361 (1988).10.1080/00150198808201399Google Scholar
4. Lee, J. J., Thio, C. L., and Desu, S. B., Phys. Stat. Sol. (a) 151, 171 (1995).10.1002/pssa.2211510120Google Scholar
5. Gruverman, A. L., Hatano, J. and Tokumoto, H., Jpn. J. Appl. Phys. 36, 2207 (1997).10.1143/JJAP.36.2207Google Scholar
6. Auciello, O., Gruverman, A., Tokumoto, H., Prakash, S. A., Aggarwal, S., Ramesh, R., MRS Bulletin 23 (1), 33 (1998).10.1557/S0883769400031444Google Scholar
7. Colla, E. L., Hong, S., Taylor, D. V., Tagantsev, A. K., No, K., and Setter, N., Appl. Phys. Lett. 72(21), 2763 (1998).10.1063/1.121083Google Scholar
8. Ramesh, R., Dutta, B., Ravi, T. S., Lee, J., Sands, T., and Keramidas, V. G., Appl. Phys. Lett. 64(12), 1588 (1994).10.1063/1.111848Google Scholar
9. Kholkin, A., Colla, E., Brooks, K., Muralt, P., Kohli, M., Maeder, T., Taylor, D., and Setter, N., Microelectronic Engineering 29, 261 (1995).10.1016/0167-9317(95)00157-3Google Scholar
10. Hong, S., Shin, H., Jeon, J. U., Pak, E. Y., and No, K., submitted for publication (1999).Google Scholar