Hostname: page-component-cd9895bd7-gvvz8 Total loading time: 0 Render date: 2024-12-27T02:37:16.006Z Has data issue: false hasContentIssue false

Characterization of Porous Silicon: Structural, Optical and Electrical Properties

Published online by Cambridge University Press:  28 February 2011

P. A. Badoz
Affiliation:
FRANCE TELECOM-CNET, BP 98, 38243 Meylan Cedex, France.
D. Bensahel
Affiliation:
FRANCE TELECOM-CNET, BP 98, 38243 Meylan Cedex, France.
G. Bomchil
Affiliation:
FRANCE TELECOM-CNET, BP 98, 38243 Meylan Cedex, France.
F. Ferrieu
Affiliation:
FRANCE TELECOM-CNET, BP 98, 38243 Meylan Cedex, France.
A. Halimaoui
Affiliation:
FRANCE TELECOM-CNET, BP 98, 38243 Meylan Cedex, France.
P. Perret
Affiliation:
FRANCE TELECOM-CNET, BP 98, 38243 Meylan Cedex, France.
J. L. Regolini
Affiliation:
FRANCE TELECOM-CNET, BP 98, 38243 Meylan Cedex, France.
I. Sagnes
Affiliation:
FRANCE TELECOM-CNET, BP 98, 38243 Meylan Cedex, France.
G. Vincent
Affiliation:
FRANCE TELECOM-CNET, BP 98, 38243 Meylan Cedex, France.
Get access

Abstract

The aim of this paper is to provide a better understanding of photoluminescent porous silicon (PS) microstructure in relation to their electronic properties: absorption band edge shift1 and quantum confinement hypothesis1,2, dielectric constant evolution and electroluminescence characteristics.

Results concerning the p type PS microstructure characterization by X ray diffraction and electron microscopy are presented showing a noticeable decrease in crystallite size and surface area with decreasing substrate doping and increasing porosity.

The optical transmission of homogeneous free-standing PS layers of different porosities and substrate dopings is studied, showing no evidence of a direct energy gap in PS. On the contrary, a large blue shift of the optical absorption edge, taking into account the total Si mass content in the PS film, is demonstrated. This shift is well correlated with the crystallite size variations with porosity and substrate doping and is attributed to a quantum confinement of electronic wavefunctions in the nanocrystallites.

On the other hand, ellipsometry measurements show the PS absorption to be little affected by the microcrystalline structure of the material in the 3.5–5 eV range, i.e. above the direct band gap of bulk Si. This indicates that, if confirmed, the quantum confinement strongly affects the PS joint density of states in the vicinity of the Si band edge and, as could be expected, to a much lesser degree near the edge of the confining potential.

Capacitance voltage measurements of thin PS layers allow the determination of the dielectric constant which is shown to decrease with increasing porosity. This behavior is in reasonable agreement with theε values deduced from the transmission experiments in the near infrared. Furthermore, it is shown that this dependence on porosity is well accounted for by the Bruggeman effective medium approximation.

Finally, recent results concerning visible light emission from solidstate porous silicon devices will be presented: I-V characteristics, electroluminescence intensity and dynamic, quantum efficiency and device ageing.

Type
Research Article
Copyright
Copyright © Materials Research Society 1993

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Lehman, V. and Gosele, U., Appl. Phys. Lett. 58, 856 (1991).Google Scholar
2 Canham, L. T., Appl. Phys. Lett. 57, 1046 (1990).Google Scholar
3 Canham, L. T., Houlton, M. R., Leong, W. Y., Pickering, C., and Keen, J. M., J. Appl. Phys. 70, 422 (1991).Google Scholar
4 Gonchond, J. P., Halimaoui, A., and Ogura, K., Inst. Phys. Conf. Ser. 117, 235 (1991).Google Scholar
5 Berbezier, I., Research report 1992 (unpublished). See alsoGoogle Scholar
Cullis, A. G. and Canham, L. T., Nature, 353, (1991).Google Scholar
6 Vezin, V., PhD Thesis, University de Poitiers, 1991 (unpublished).Google Scholar
7 Barla, K., Bomchil, G., Herino, R., Pfister, J. C., and Freund, A. J. Cryst. Growth. 68, 727 (1984)Google Scholar
8 Bellet, D., Dolino, G., Ligeon, M., Blanc, P., and Krisch, M., J. Appl. Phys. 71, 145 (1992).Google Scholar
9 Sagnes, I., Halimaoui, A., Vincent, G., and Badoz, P. A., Appl. Phys. Lett. Dec 1992.Google Scholar
10 Koyama, H., Araki, M., Yamamoto, Y., and Koshida, N., Jpn. J. Appl. Phys. 30, 3606 (1991).Google Scholar
11 Voos, M., Uzan, Ph., Delalande, C., Bastard, G., and Halimaoui, A., Appl. Phys. Lett. 61, 1213 (1992).Google Scholar
12 Pickering, C., Beale, M. I. J., Robbins, D. J., Pearson, P. J., and Greef, R., Thin Solid Films 125, 157 (1985).Google Scholar
13 Johnson, E. J., Semiconductors and Semimetals, Vol. 3 (Willardson, R. K. and Beer, A. C., Academic Press Ed., New York, 1967), Chap. 6, p 153.Google Scholar
14 Sze, S. M., Physics of semiconductor devices, (John Wiley, New York, 1981).Google Scholar
15 Harbeke, G., Optical properties of solids, (Ed. Abeles, F., North-Holland, Amsterdam 1972), chap. 2.Google Scholar
16 Landolt-Börnstein, , Vol. 17 (Springer-Verlag, Berlin, 1982), p 369.Google Scholar
17 Furukawa, S. and Miyasato, T., Phys. Rev. B 38, 5726 (1988).Google Scholar
18 Takagi, H., Ogawa, H., Yamazaki, Y., Ishikazi, A., and Nakagiri, T., Appl. Phys. Lett. 56, 2379 (1990).Google Scholar
19 Sanders, G. D. and Chang, Y.-C., Phys. Rev. B 45, 9202 (1992).Google Scholar
20 Proot, J. P., Delerue, C., and Allan, G., Appl. Phys. Lett. 61, 1948 (1992).Google Scholar
21 Ferrieu, F., Halimaoui, A., and Bensahel, D., Solid State Com. 84, 293 (1992).Google Scholar
22 Halimaoui, A., Oules, C., Bomchil, G., Bsiesy, A., Gaspard, F., Herino, R., Ligeon, M., and Muller, F., Appl. Phys. Lett. 59, 304 (1991).Google Scholar
23 Richter, A., Steiner, P., Kozlowski, F., and Lang, W., Electron Dev. Lett. 12, 691 (1991),Google Scholar
Koshida, N. and Koyama, H., Appl. Phys. Lett. 60, 347 (1992),Google Scholar
Namavar, F., Maruska, H.P., and Kalkhoran, N.M., Appl. Phys. Lett. 60, 2514 (1992), andGoogle Scholar
Garchery, L., rapport de DEA, june 1992 (unpublished).Google Scholar
24 Bonneville, R. and Fishman, G., Phys. Rev. B22, 2008 (1980).Google Scholar
25 Ashcroft, N. W. and Mermin, N. D., Solid State Physics, (HRW international Ed. Hong Kong, 1987).Google Scholar
26 Aspnes, D. E., Theeten, J. B., and Hottier, F., Phys. Rev B 20, 3292 (1979).Google Scholar
27 Regolini, J. L., Bensahel, D., and Mercier, J., Appl. Phys. Lett 54, 658 (1989).Google Scholar
28 Vial, J. C., Bsiesy, A., Gaspard, F., Herino, R., Ligeon, M., Muller, F., Romestain, R. and Macfarlane, R.M., Phys. Rev. B45, 14171 (1992).Google Scholar
29 Xie, Y.H., Wilson, W.L., Ross, F.M., Mucha, J.A., Fitzgerald, E.A., Macaulay, J.M., and Harris, T.D., J. Appl. Phys. 71, 2403 (1992).Google Scholar