Hostname: page-component-cd9895bd7-dk4vv Total loading time: 0 Render date: 2024-12-23T18:42:54.897Z Has data issue: false hasContentIssue false

Characterization of Polyesters Obtained by Enzyme-Catalyzed Ring-Opening Polymerization of Pentadecanolide at high Temperature

Published online by Cambridge University Press:  16 March 2015

W. Herrera-Kao
Affiliation:
Centro de Investigación Científica de Yucatán, A.C.; Unidad de Materiales., Calle 43 No. 130, Col. Chuburná de Hidalgo, C.P. 97200, Mérida, Yucatán, México Centro de Investigación en Materiales Avanzados, S.C., Unidad Monterrey, Alianza Norte 202 Parque de Investigación e Innovación Tecnológica, C.P. 66600; Apodaca, Nuevo León, México.
M. Cervantes-Uc
Affiliation:
Centro de Investigación Científica de Yucatán, A.C.; Unidad de Materiales., Calle 43 No. 130, Col. Chuburná de Hidalgo, C.P. 97200, Mérida, Yucatán, México
T. Lara-Ceniceros
Affiliation:
Centro de Investigación en Materiales Avanzados, S.C., Unidad Monterrey, Alianza Norte 202 Parque de Investigación e Innovación Tecnológica, C.P. 66600; Apodaca, Nuevo León, México.
M. Aguilar-Vega
Affiliation:
Centro de Investigación Científica de Yucatán, A.C.; Unidad de Materiales., Calle 43 No. 130, Col. Chuburná de Hidalgo, C.P. 97200, Mérida, Yucatán, México
Get access

Abstract

Differences on physicochemical properties of poly(pentadecanolide), PPDL, synthesized by enzymatic ring opening polymerization at two different temperatures, 70 C and 90 C, using Novozyme-430 were assessed. PPDL synthesized at 90°C presents lower molecular weight and crystallinity than the one prepared at 70°C. It was detected by FTIR that PPDL synthesized at 90°C presents a large amorphous phase with more terminal OH groups. A difference in the melting and crystallization behavior was detected by differential scanning calorimetry, DSC, where the melting of the PPDL synthesized at 90°C presents multiple melting and crystallization events at lower temperature than those exhibit by PPDL synthesized at 70°C which presents a well defined single melting and crystallization event. The differences in melting behavior are attributed to the presence of a larger amorphous phase in PPDL synthesized at 90°C due to increased number of terminal OH groups that disrupt the crystalline structure. Thermal stability is also higher in PPDL synthesized at 70°C since the onset of decomposition starts 50°C above that observed in PPDL obtained at 70°C.

Type
Articles
Copyright
Copyright © Materials Research Society 2015 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES:

Albertsson, A-C, Srivastava, RK, (2008), Recent developments in enzyme-catalyzed ring-opening polymerization. Adv Drug Delivery Reviews 60, 10771093.CrossRefGoogle ScholarPubMed
Panlawan, P, Luangthongkam, P, Wiemann, LO, Sieber, V, Marie, E, Durand, A, Inprakhon, P. (2013) Lipase-catalyzed interfacial polymerization of ω-pentadecalactone in aqueous biphasic medium: A mechanistic study. J Molecular Catal B: Enzym 88 6976.CrossRefGoogle Scholar
Kobayashi, S. (2009) Recent developments in lipase-catalyzed synthesis of polyesters. Macromol Rapid Commun 30, 237266.CrossRefGoogle ScholarPubMed
Kobayashi, S, Makino, A. (2009) Enzymatic polymer synthesis: An opportunity for green polymer chemistry. Chem Rev 109, 52885353.CrossRefGoogle ScholarPubMed
Bisht, KS, Henderson, LA, Gross, RA, Kaplan, DL, Swift, G. (1997) Enzyme-catalyzed ring-opening polymerization of ω-pentadecalactone. Macromolecules 30, 27052711.CrossRefGoogle Scholar
Gazano, M, Malta, V, Focarete, ML, Scandola, M, Gross, RA. (2003) Crystal structure of poly(ω-pentadecalactone). J Polym Sci: Part B: Polym Phys 41, 10091013.CrossRefGoogle Scholar
De Geus, M., Van der Meulen, I., Goderis, B., Van Hecke, K., Dorschu, M., Van der Werf, H., Koning, C. E. and Heise, A., (2010), Performance polymers from renewable monomers:high molecular weight poly(pentadecanolactone) for fiber applications, Polym. Chem., 1, 525533.CrossRefGoogle Scholar
Kumar, A, Karla, B, Dekhterman, A, Gross, RA. (2000) Efficient ring-opening polymerization and copolymerization of ε-caprolactone and ω-pentadecalactone catalyzed by Candida antartica Lipase B. Macromolecules 33, 63036309.CrossRefGoogle Scholar
Nemekawa, S., Uyama, H., Kobayasi, S, (2001) Lipase-catalyzed ring-opening polymerization of lactones in the presence of aliphatic polyesters to ester copolymers, Macromol Chemie Phys, 202, 801806.3.0.CO;2-J>CrossRefGoogle Scholar
Dyer, J.R. (1965) Applications of absorption spectroscopy of organic compounds. Prentice-Hall.Google Scholar
Jedlinski, Z, Juzwa, M, Adamus, G, Kowalczul, M, (1996) Anionic polymerization of pentadecanolide. A new route to a potentially biodegradable aliphatic polyester Macromol Chemi & Phys, 197, 29232929.CrossRefGoogle Scholar
Xu, J, Guo, B-H, Yang, R, Wu, Q, Chen, G-Q, Zhang, Z-M. (2002) In situ FTIR study on melting and crystallization of polyhydroxyalkanoates. Polymer 43, 68936899.CrossRefGoogle Scholar
Padermshoke, A, Katsumoto, Y, Sato, H, Ekgasit, S, Noda, I, Ozaki, Y. (2005) Melting behavior of poly(3-hydroxybutyrate) investigated by two-dimensional infrared correlation spectroscopy. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 61, 541550.CrossRefGoogle ScholarPubMed
Sato, H, Dybal, J, Murakami, R, Noda, I, Ozaki, Y. (2005) Infrared and Raman spectroscopy and quantum chemistry calculation studies of C–H…O hydrogen bondings and thermal behavior of biodegradable polyhydroxyalkanoate. J Molecular Struc, 744-747, 3546.CrossRefGoogle Scholar
Focarete, ML, Scandola, M, Kumar, A, Gross, RA. (2001) Physical characterization of poly(ω-pentadecalactone) synthesized by lipase-catalyzed ring-opening polymerization. J Polym Sci: Part B: Polym Phys 39, 17211729.CrossRefGoogle Scholar