Hostname: page-component-cd9895bd7-gbm5v Total loading time: 0 Render date: 2024-12-27T01:50:39.105Z Has data issue: false hasContentIssue false

Characterization of Mixed-Metal Oxides Using Synchrotron-Based Time-Resolved x-ray Diffraction and x-ray Absorption Spectroscopy

Published online by Cambridge University Press:  10 February 2011

José A. Rodriguez
Affiliation:
Department of Chemistry, Brookhaven National Laboratory Upton, NY 11973, USA
Jonathan C. Hanson
Affiliation:
Department of Chemistry, Brookhaven National Laboratory Upton, NY 11973, USA
Joaquín L. Brito
Affiliation:
Centro de Química, Instituto Venezolano de Investigaciones Cientificas (IVIC), Apartado 21827, Caracas 1020-A, Venezuela
Amitesh Maiti
Affiliation:
Molecular Simulations Inc, 9685 Scranton Road, San Diego, CA 92121, USA
Get access

Abstract

Experiments are described showing the utility of synchrotron-based time-resolved x-ray diffraction (TR-XRD) and x-ray absorption near-edge spectroscopy (XANES) for characterizing the physical and chemical properties of mixed-metal oxides that contain Mo and a second transition metal (Fe, Co or Ni). TR-XRD was used to study the transformations that occur during the heating of a FeMoO4/Fe2(MoO4)3 mixture and the α⇒β phase transitions in CoMoO4 and NiMoO4. The Mo LII- and O K-edges in XANES are very useful for probing the local symmetry of Mo atoms in mixed-metal oxides. The results of XANES and density-functional calculations (DMo13, DFT-GGA) show large changes in the splitting of the empty Mo 4d levels when going from tetrahedral to octahedral coordinations. XANES is very useful for studying the reaction of H2, H2S and SO2 with the mixed-metal oxides. Measurements at the S K-edge allow a clear identification of S, SO2, SO3 or SO4 on the oxide surfaces. Changes in the oxidation state of molybdenum produce substantial shifts in the position of the Mo LII- and MIII-edges.

Type
Research Article
Copyright
Copyright © Materials Research Society 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Sleight, A.W. and Chamberland, B.L., Inorg. Chem. 7, p. 1672 (1968).10.1021/ic50066a050Google Scholar
2. Zou, J. and Schrader, G.L., J. Catal. 161, p. 667 (1996).10.1006/jcat.1996.0229Google Scholar
3. Brito, J.L. and Barbosa, A.L., J. Catal. 171, p. 467 (1997).10.1006/jcat.1997.1796Google Scholar
4. Rodriguez, J.A., Chaturvedi, S., Hanson, J.C., Albornoz, A. and Brito, J.L., J. Phys. Chem. B, 102, p. 1347 (1998).10.1021/jp972137qGoogle Scholar
5. Mazzochia, C., Aboumrad, C., Diagne, C., Tempesti, E., Herrmann, J.M. and Thomas, G., Catal. Lett. 10, p. 181 (1991).10.1007/BF00772070Google Scholar
6. Norby, P. and Hanson, J.C., Catal. Today, 39, p. 301 (1998).10.1016/S0920-5861(97)00118-1Google Scholar
7. Rodriguez, J.A., Hanson, J.C., Chaturvedi, S., Maiti, A. and Brito, J.L., J. Chem. Phys. 112, in press (2000).Google Scholar
8. Chen, J.G., Surf. Sci. Rep. 30, p. 1 (1997).10.1016/S0167-5729(97)00011-3Google Scholar
9. Payne, M.C., Allan, D.C., Arias, T.A. and Johannopoulus, J.D., Rev. Mod. Phys. 64, p. 1045 (1992).10.1103/RevModPhys.64.1045Google Scholar
10. Delley, B., Schefer, J. and Woike, T., J. Chem. Phys. 107, p. 10067 (1997).10.1063/1.474143Google Scholar
11. Rodriguez, J.A., Hanson, J.C. and Brito, J.L., to be published.Google Scholar
12. Sleight, A.W. and Brixner, L.H., J. Solid State Chem. 7, p. 172 (1973).10.1016/0022-4596(73)90152-7Google Scholar
13. Rodriguez, J.A., Chaturvedi, S., Hanson, J.C. and Brito, J.L., J. Phys. Chem. B, 103, p. 770 (1999).10.1021/jp983115mGoogle Scholar
14. Chaturvedi, S., Rodriguez, J.A. and Brito, J.L., Catal. Lett. 51, p. 85 (1998).10.1023/A:1019089002041Google Scholar