Published online by Cambridge University Press: 01 February 2011
Individual magnetostrictive nanobars and arrays comprised of magnetostrictive nanobars were recently introduced as a high performance biosensor platform. In this paper, we report the fabrication and characterization of magnetostrictive nanobars based on Fe-B alloy. The nanobars were synthesized using a template-based electrochemical deposition method. The composition and microstructure of the Fe-B nanobars are directly related to their performance as a biosensor platform. The Fe-B nanobar arrays and individual nanobar were characterized using scanning electron microscopy (SEM), transmission electron microscopy (TEM), as well as Auger electron spectroscopy (AES). Morphologically, nanobars have a very flat top and a smooth cylindrical surface, which are critical factors for obtaining high performance as sensor platforms. Structurally, electron diffraction reveals that the Fe-B nanobars are amorphous. AES analysis indicates that Fe-B nanobars show no significant compositional variation along the length direction. It is found that the nanobars were covered by an oxidation layer of a typical thickness of ∼ 10 nm. It is believed that this oxidation layer is related to the passivation of nanobars in air. High temperature annealing and subsequent structural analysis indicate that the Fe-B nanobars possess a good thermal stability.