Hostname: page-component-586b7cd67f-t7fkt Total loading time: 0 Render date: 2024-11-25T17:51:38.921Z Has data issue: false hasContentIssue false

Characterization of Mbe GaAs Layers Grown at 200°C–300°C

Published online by Cambridge University Press:  28 February 2011

C.R. Wie
Affiliation:
State University of New York at Buffalo, Dept. of ECE, Bonner Hall, Buffalo, NY14260
K. Xie
Affiliation:
State University of New York at Buffalo, Dept. of ECE, Bonner Hall, Buffalo, NY14260
T.T. Bardin
Affiliation:
Lockheed Palo Alto Research Laboratory, Palo Alto, CA94304
J.G. Pronko
Affiliation:
Lockheed Palo Alto Research Laboratory, Palo Alto, CA94304
D.C. Look
Affiliation:
Wright State University, Dayton, 0H45435
K.R. Evans
Affiliation:
Wright-Patterson AFB, OH45433
C.E. Stutz
Affiliation:
Wright-Patterson AFB, OH45433
Get access

Abstract

Lattice parameter, RBS channeling, and T-dependent Hall effect and resistivity are measured in 5 μm GaAs layers MBE-grown at 200°C, 250°C and 305°C, and subsequently annealed. Perpendicular lattice parameter was increased by 0.15% for 200 °C, 0.10% for 250°C, and 0.05% for 305°C sample. No parallel mismatch was observed. In annealing up to 800°C, most recovery of lattice parameter occured at 350°C-450°C. For samples annealed at 500° C − 600°C, the conductivity activation energy was higher in the furnace annealed sample than in the RTA-annealed sample, indicating possible depth nonuniformity in furnace annealed sample. The 600°C RTA annealed sample indicated a donor activation energy of 0.61 eV. A 600°C furnace annealed sample indicated the deep donor concentration of 1.5×1018 cm−3. Maximum mobility in the 500–600°C annealed sample was 3000–3500 cm2/Vs, limited by the neutral impurity scattering and polar optical phonon scattering.

Type
Research Article
Copyright
Copyright © Materials Research Society 1990

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Smith, F.W., Calawa, A.R., Chen, C.L., Manfra, M.J., and Mahong, L.J., IEEE Electron Divice Lett. EDL-9, 77 (1988)Google Scholar
2. Stall, R.A., Wood, C.E.C., Kirchner, P.D., and Eastman, L.F., Electron. Lett. 16, 171 (1980).10.1049/el:19800122Google Scholar
3. Kamikawa, M.,Liliental-Weber, Z.,Weber, E.R.,George, T.,Kortright, J.B., Smith, F.M., Tsaur, B.-Y.,and Calawa, A.R.,Appl.Phys.Lett. 5A,1881(1989).Google Scholar
4. Wie, C.R., Kim, H.M., and Lau, K.M., SPIE Proc. Vol.877, 41 (1988).10.1117/12.943938Google Scholar
5. James, R.W., The Optical Principles of the Diffraction of X-rays (Ox Bow Press, Woodbridge, CT 1982).Google Scholar
6. Coates, R. and Mitchell, E.W.J., Adv.Phys. 2A, 593 (1975).10.1080/00018737500101471Google Scholar
7. Wie, C.R., Tombrello, T.A.,and 'Vreeland, T. Jr., Phys.Rev. B33, 44(1986).Google Scholar
8. Burns, G.,Dacol, F.H.,Wie, C.R.,Burstein, E.,and Cardona, M., Solid State Comm. 62, 449 (1987).10.1016/0038-1098(87)91096-9Google Scholar
9. Wie, C.R.,Vreeland, T., Tombrello, T.A., Nucl.Instr.Meth. B66, 44 (1986).Google Scholar
10. Chu, W.K., Mayer, J.W., and Nicolet, M.A., Backscattering Spectrometry (Academic Press, NY, 1978) P.257.Google Scholar
11. Look, D.C., Electrical Characterization of GaAs Materials and Devices (J.Wiley & Sons, NY, 1989), P.117.Google Scholar