Hostname: page-component-586b7cd67f-2plfb Total loading time: 0 Render date: 2024-11-25T15:46:27.867Z Has data issue: false hasContentIssue false

Characterization of Materials for a Hydrogen-Based Economy by Cold Neutron Prompt Gamma-Ray Activation Analysis

Published online by Cambridge University Press:  01 February 2011

Rick Paul
Affiliation:
[email protected], NIST, Analytical Chemistry Division, 100 Bureau Drive, MS 8395, Gaithersburg, MD, 20899, United States, 301 975-6287, 3012089279
Lei Raymond Cao
Affiliation:
[email protected], NIST, Analytical Chemistry Division, 100 Bureau Drive, MS 8395, Gaithersburg, MD, 20899, United States
Get access

Abstract

An instrument for cold neutron prompt gamma-ray activation analysis (PGAA) at the NIST Center for Neutron Research (NCNR) has proven useful for the chemical characterization of hydrogen storage materials and other materials of importance to a hydrogen-based economy. The detection limit for hydrogen is less than 10 mg/kg for most materials. Potential hydrogen storage materials that have been characterized by PGAA include single-wall carbon nanotubes with and without boron doping, porous carbons, lithium magnesium imides, and ternary hydrides of various elements. The capability to allow in situ hydrogenation and characterization of materials is currently under development. PGAA has also been used to characterize materials used in hydrogen fuel cells, including solid proton conductors, polymer membrane, and proton exchange membranes. Future upgrades to the instrument will improve detection limits and functionality of the instrument.

Type
Research Article
Copyright
Copyright © Materials Research Society 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Paul, R. L., Lindstrom, R. M., and Heald, A. E., Radioanal. Nucl. Chem., 215, 6368 (1997).Google Scholar
2 Paul, R. L., Analyst, 122, 35R (1997).Google Scholar
3 Paul, R. L., American Laboratory, 34(3), 1520 (2002).Google Scholar
4 Liu, Y., Brown, C. M., Blackburn, J. L., Neumann, D. A., Gennett, T., Simpson, L., Parilla, P., Dillon, A. C. and Heben, M. J., J. Alloys Compounds, 446-447, 368372 (2007)Google Scholar
5 Wu, Hui, Zhou, Wei, Udovic, Terrence J., Rush, John J., Chem. Mater., 19, 329334 (2007).Google Scholar
6 Wu, Hui, Zhou, Wei, Udovic, Terrence J., Rush, John J., J. Alloy Comp., 446-447, 101105 (2007).Google Scholar
7 Wu, Hui, Hartman, Michael R., Udovic, Terrence J., Rush, John J., Zhou, Wei, Bowman, Robert C., Jr., Vajo, John J., Acta. Cryst., B63, 6368 (2007)Google Scholar
8 Paul, R. L., in Hydrogen Storage Materials, edited by Wang, J.C.F., Tumas, W., Rougier, A., Heben, M.J., Akiba, E. (Mater. Res. Soc. Symp. Proc. 927E, Warrendale, PA, 2006), Paper # 0927-EE03-05.Google Scholar
9 Krug, F., Schober, T., Paul, R., and Springer, T., Solid State Ionics, 77, 185188 (1995).Google Scholar
10 Karmonik, C., Udovic, T. J., Paul, R. L., Rush, J. J., Lind, K., and Hempelman, R., Solid State Ionics, 109, 207211 (1998).Google Scholar
11 Young, S. K., Trevino, S. F., Beck Tan, N. C., and Paul, R. L., Journal of Polymer Science Part B: Polymer Physics, 41(13), 14851492 (2003).Google Scholar