Hostname: page-component-78c5997874-8bhkd Total loading time: 0 Render date: 2024-11-19T05:28:12.675Z Has data issue: false hasContentIssue false

Characterization of Lanthanoid Phases Formed Upon Glass Dissolution in Salt Solutions

Published online by Cambridge University Press:  25 February 2011

Anette Rother
Affiliation:
Kernforschungszentrum Karlsruhe, Germany
Werner Lutze
Affiliation:
Kernforschungszentrum Karlsruhe, Germany
Peter Schubert-Bischoff
Affiliation:
Hahn-Meitner-Institut, Berlin, Germany
Get access

Abstract

This communication gives a detailed characterization of some molybdate solid solutions and cerianite-type material which formed on the French borosilicate nuclear waste glass R7T7 upon corrosion in various saturated salt solutions at 110°C, 150 °C and 190 °C. The glass contained lanthanoid elements, such as neodymium, lanthanum, praseodymium, cerium and yttrium, but did not contain actinoid elements, except uranium and thorium. Various solid solutions containing lanthanoids (Ln) were found on the glass surface after corrosion, including powellite solid solutions and cerianite-type material. The secondary solid phases are characterized based on quantitative microchemical and structural analyses. These phases are expected to incorporate actinoids such as americium and curium in acid magnesiumcontaining salt solutions. The phases then constitute an additional barrier against migration of these radionuclides, which would otherwise be in the aqueous phase.

Type
Research Article
Copyright
Copyright © Materials Research Society 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Lutze, W., Müller, R., Montserrat, W., Mat. Res. Soc. Symp. Proc. Vol. 112, Apted, M. J. and Westerman, R. E., eds., p. 575 (1988)Google Scholar
2. Lutze, W., Miller, R., Montserrat, W., Mat. Res. Soc. Symp. Proc. Vol. 127, Lutze, W. and Ewing, R. C., eds., p. 81 (1989)CrossRefGoogle Scholar
3. Pacaud, F., Jaquet-Francillon, N., Terki, A., Fillet, C., Mat. Res. Soc. Symp. Proc. Vol. 127, Lutze, W. and Ewing, R. C., eds., p. 105 (1989)Google Scholar
4. Grambow, B. et al. , Radiochim. Acta 52/53, p. 501 (1991)Google Scholar
5. Grambow, B., Mülller, R., Mat. Res. Soc. Symp. Proc. Vol. 176, p. 229 (1990)Google Scholar
6. Pouchou, L. J. and Pichoir, F., La Recherche Aerospatiale, 3, p. 167 (1984)Google Scholar
7. Chang, L. L. Y., J. Inorg. Nucl. Chem. 31, p. 2003 (1969)Google Scholar
8. Anderson, A. T., Am. Min. 68, p. 125 (1983)Google Scholar
9. Gmelin, Handbook of Inorganic Chemistry, Rare Earth A7 and A8 (1984)Google Scholar
10. Fleischer, M., Am. Min. 51, p. 530 (1966)Google Scholar
11. Fleischer, M., Am. Min. 49, p. 1152 (1964)Google Scholar
12. Coleman, R. C., Appleman, D. E., Am. Min. 41, p. 657 (1957)Google Scholar
13. Tabuteau, A. et al. , Radiochem. Radioanal. Letters 12(2-3), p. 139 (1972)Google Scholar
14. Chakoumakos, B. C. et al. , Science 236, p. 1556 (1987)CrossRefGoogle Scholar
15. Ewing, R. C., Haaker, R. F. and Lutze, W., Mat. Res. Soc. Symp. Proc., Vol. 11, ed. Lutze, W., North-Holland, p. 339 (1982)Google Scholar
16. Gürmen, E., Daniels, E., King, J. S., J. Chem. Phys., 55(3), p. 1093 (1971).Google Scholar