Hostname: page-component-586b7cd67f-t8hqh Total loading time: 0 Render date: 2024-11-25T18:05:09.051Z Has data issue: false hasContentIssue false

Characterization of interstitial defect clusters in ion-implanted Si

Published online by Cambridge University Press:  15 February 2011

J. L. Benton
Affiliation:
Bell Laboratories, Lucent Technologies, 700 Mountain Avenue, Murray Hill, 07974-N.J.
S. Libertino
Affiliation:
Bell Laboratories, Lucent Technologies, 700 Mountain Avenue, Murray Hill, 07974-N.J.
S. Coffa
Affiliation:
CNR-IMETEM, Stradale Primosole, 50,1–95121 Catania, Italy
D. J. Eaglesham
Affiliation:
Bell Laboratories, Lucent Technologies, 700 Mountain Avenue, Murray Hill, 07974-N.J.
Get access

Abstract

We have investigated the properties of Si interstitial clusters in ion implanted crystalline Si. Deep Level Transient Spectroscopy measurements have been used to characterize the residual damage in Si samples implanted with Si ions at fluence in the range 1×109-1×1012/cm2 and annealed at temperatures of 100–700 °C. We have found that, in the fluence and annealing temperature range where extended defects are not formed, the residual damage is dominated by Si interstitial clusters which introduce deep levels at Ev+0.36 eV and at Ev+O-53 eV. By using Si substrates with a different impurity and dopant content, we have found that C, O and B play a role in determining the defect growth kinetics but are not the main constituents of these clusters. We estimate that 40 to 125 Si self intersti-tials are stored in these clusters and believe that they are the main source of Si self-inter-stitials in transient enhanced diffusion phenomena occurring in the absence of {311} or extended defects.

Type
Research Article
Copyright
Copyright © Materials Research Society 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1 Cowern, N. E. B., Janssen, K. T. F., Jos, H. F. F., J. Appl. Phys. 68, 6191 (1990).Google Scholar
2 Stolk, P. A., Gossmann, H.-J., Eaglesham, D. J., Jacobson, D. C., Rafferty, C. S., Gilmer, G. H., Jaraiz, M., Poate, J. M. and Haynes, T. E., J. Appl. Phys. 81, 6031, (1997).Google Scholar
3 Giles, M., J. Electr. Soc. 138, 1160, (1991).Google Scholar
4 Jaraiz, M., Gilmer, G. H., Poate, J. M., de la Rubia, T. D., Appl. Phys. Lett. 68, 409, (1996).Google Scholar
5 Cowern, N. E. B., van de Walle, G. F. A., Zalm, P. C., Vandenhoudt, D. W. E., Appl. Phys. Lett. 65, 2981, (1994).Google Scholar
6 Pelaz, L., Jaraiz, M., Gilmer, G. H., Rafferty, C. S., Eaglesham, D. J., Poate, J. M., Appl. Phys. Lett. 70, 2285, (1997).Google Scholar
7 Benton, J. L., Libertino, S., Kringhøi, P., Eaglesham, D. J., Poate, J. M., Coffa, S.,, J. Appl. Phys., in press (15 June 1997 issue).Google Scholar
8 Libertino, S., Benton, J. L., Jacobson, D. C., Eaglesham, D. J., Poate, J. M., Coffa, S., Fuochi, P. G., Lavalle, M., Appl. Phys. Lett, accepted for publication.Google Scholar
9 Libertino, S., Benton, J. L., Coffa, S., Jacobson, D. C., Eaglesham, D. J., Poate, J. M., Fuochi, P. G., Lavalle, M., Mat. Res. Proc. Vol. 469, (1997).Google Scholar
10 Reiss, S. and Heinig, K.-H., Nucl. Instr. and Meth. B 84, 229, (1994).Google Scholar
11 Ayres, J. R., Brotherton, S. D., J. Appl. Phys. 71, 2702, (1992).Google Scholar
12 Hobler, G., Nucl. Instr. and Meth. B 96, 155, (1995).Google Scholar
13 Zhang, L. H., Jones, K. S., Chi, P. H., Simons, D. S., Appl. Phys. Lett. 67, 2025, (1995).Google Scholar