Hostname: page-component-586b7cd67f-tf8b9 Total loading time: 0 Render date: 2024-11-25T19:24:43.178Z Has data issue: false hasContentIssue false

Characterization of Interfacial Structure of InGaAs/InP Short Period Superlattices by Raman Scattering and High Resolution X-Ray Diffraction

Published online by Cambridge University Press:  22 February 2011

Teruo Mozume*
Affiliation:
Central Research Laboratory, Hitachi Ltd., Kokubunji, Tokyo 185, Japan
Get access

Abstract

The x-ray diffraction (XRD) of InGaAs/InP short-period superlattices (SPSL's) grown on (001)InP substrates by gas source molecular beam epitaxy (GSMBE) and by gas source migration enhanced epitaxy (GSMEE) shows that the GSMBE grown SPSL is strain free, and that GSMEE grown SPSL's with InGa-P and In-As heterointerfaces have strain-induced zerothorder satellite peak shift consistent with that in simulation results for the InGaAs/InP SPSL with one monolayer of InGaP and InAs inserted in each interface. Partial destruction of the long-range order is confirmed by the observation of the extra diffraction peak in GSMBE grown SPSL and by weak intensity of satellite peaks and nonuniform spacing between satellite peaks in GSMEE grown SPSL's. Raman scattering shows that the strain is accommodated in the interface layer in GSMEE grown samples. A confinement model without interface disorder fits the GaAs LO phonon very well. These results indicate that the local atomic arrangements are tailored by GSMEE, but that long range-order is impaired by the misfit dislocations in GSMEE grown SPSL's and by the exchange between As to P at the interfaces in GSMBE grown SPSL.

Type
Research Article
Copyright
Copyright © Materials Research Society 1994

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Wang, T. Y., Reihlen, E. H., Jen, H. R., and Stringfellow, G. B., J. Appl. Phys. 66, 5376 (1989).Google Scholar
2. Skevington, P. J., Halliwell, M. A. G., Lyons, M. H., Amin, S. J., Rajman-Greene, M. A. Z., and Davis, G. J., J. Cryst. Growth 120, 328 (1992).Google Scholar
3. Anan, T., Sugou, S., Nishi, K., and Ichihashi, T., Appl. Phys. Lett. 63, 1047 (1993).Google Scholar
4. Takeyasu, N., Asahi, H., Yu, S. J., Asami, K., Kaneko, T. and Gonda, S., J. Cryst. Growth 111, 502 (1991).Google Scholar
5. Antolini, A., Bradley, P. J., Cacciatore, C., campi, d., Gastaldi, L., Genova, F., Iori, M., Lambaerti, C., Papuzza, C., and Rigo, C., J. Electron. Mater. 21, 233 (1992).Google Scholar
6. Horikoshi, Y., Kawashima, M., and Yamaguchi, H., Jpn. J. Appl. Phys. 25, L868 (1986).CrossRefGoogle Scholar
7. Ogata, K., Suenaga, K., Nakano, A., and Mozume, T., Mat. Res. Soc. Symp. Proc. 281, 109 (1993).Google Scholar
8. Mozume, T., Kashima, H., Hosomi, K., Ogata, K., Suenaga, K., and Nakano, A., to be published in Appl. Surf. Sci..Google Scholar
9. Mozume, T., Kashima, H., Hosomi, K., Ogata, K., Suenaga, K., and Nakano, A., to be published in J. Cryst. Growth.Google Scholar
10. Fewster, P. F. and Curling, C. J., J. Appl. Phys. 67, 4154 (1987).Google Scholar
11. Fewster, P. F., Philips J. Res. 41, 268 (1986).Google Scholar
12. Jusserand, B., Paquet, D. and Regreny, A., Phys. Rev. B30, 6245 (1984).Google Scholar
13. Cerderia, F., Pinczuck, A., Bean, J. C., Battlog, B., and Wilson, B. A., Appl. Phys. Lett. 45, 1138 (1984).Google Scholar
14. Pearsall, T. P., Caries, R., and Portal, J. C., Appl. Phys. Lett. 42, 436 (1983).CrossRefGoogle Scholar
15. Molinari, E., Baroni, S., Giannozzi, P., and Gironcoli, S. de, Phys. Rev. B45, 4280 (1992).Google Scholar
16. Samson, B., Smith, S. R. P., Dumelow, T., Moore, K. J., and Woodbridge, K., Superlatt Microstr., 11, 403 (1992).Google Scholar
17. Baroni, S., Giannozzi, P., and Molinari, E., Phys. Rev. B41, 3870 (1990).Google Scholar
18. Caries, R., Saint-Cricq, N., Renucci, J. B., Renucci, M. A., Phys. Rev. B22 4804 (1980).Google Scholar
19. Borcherds, H. and Kunc, K., J. Phys. C11, 4145 (1978).Google Scholar
20. Inoshita, T., J. Appl. Phys. 56, 2056 (1984).CrossRefGoogle Scholar
21. Soni, R. K., Abbi, S. C., Jain, K. P., Balkanski, M., Slempkes, S. and Benchimol, J. L., J.Appl. Phys. 59, 2184 (1986).Google Scholar