Hostname: page-component-745bb68f8f-s22k5 Total loading time: 0 Render date: 2025-01-28T23:28:41.405Z Has data issue: false hasContentIssue false

The Characterization of Germanium and Silicon for Nuclear Radiation Detectors.*

Published online by Cambridge University Press:  15 February 2011

L. S. Darken*
Affiliation:
Solid State Division, Oak Ridge National Laboratory, P.O. Box X, Oak Ridge, Tennessee 37830.
Get access

Abstract

Semiconductor nuclear radiation detectors require deep depletion depths (0.03–3.0 cm) and effective charge collection distances which are several times longer than these depletion depths. These requirements place stringent limitations on the net electrically active impurity concentration, and on the concentration of deep centers which can trap carriers generated by the incident nuclear radiation. This need for extremely pure material distinguishes the interests and efforts of the semiconductor detector community from the rest of the semiconductor community. This paper reviews the characterization of shallow-level, deep-level, neutral, and extended defects in germanium and silicon for nuclear radiation detectors. Photothermal ionization spectroscopy has been used extensively to identify the residual hydrogenic impurities in high-purity (∣NA–ND∣ ≈ 1010–1011 cm−3 ) germanium and silicon. Deep level transient spectroscopy has been effectively used to detect and identify deeper levels in high-purity germanium. Residual neutral defects are not necessarily passive: they may complex to form deep or shallow levels, they may precipitate, or they may act as nucleation sites for precipitation. The properties of extended defects (dislocations, lineage, inclusions, precipitates) and their effects on device performance are fundamentally less well understood, as the origin of the electrical activity of these defects is uncertain. It has been found in numerous instances that chemical interactions among defects are important even in these high-purity semiconductors.

Type
Research Article
Copyright
Copyright © Materials Research Society 1983

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

*

Research sponsored by the Division of Materials Sciences, U.S. Department of Energy under contract W-7405-eng-26 with Union Carbide Corporation.

References

REFERENCES

1. This technique was first reported by Lifshits, T. M. and Ya., F. Nad, Soviet Phys. Dokl. 10, 532 (1965),Google Scholar
1aand the literature to 1977 was reviewed by Kogan, Sh. M. and Lifshits, T. M., Phys. Status Solidi A 39, 11 (1977).Google Scholar
2. Lang, D. V., J. Appl. Phys. 45, 3022 (1974).Google Scholar
3. Simoen, E., Clauws, P., Broeckx, J., Vennik, J., van Sande, M. and De Laet, L., IEEE Trans. Nucl. Sci. NS-29, No. 1, 789 (1982).CrossRefGoogle Scholar
4. Haller, E. E., Hansen, W. L., Luke, P., McMurray, R. and Jarrett, B., IEEE Trans. Nucl. Sci. NS-29, No. 1, 755 (1982).Google Scholar
5. Hansen, W. L., Haller, E. E. and Luke, P. N., IEEE Trans. Nucl. Sci. NS-29, No.1, 738 (1982).Google Scholar
6. Haller, E. E., Bull. Acad. Sci. USSR Phys. Ser. 42, 8 (1979).Google Scholar
7. Haller, E. E., Hansen, W. L. and Goulding, F. S., Adv. Phys. 30, 93 (1981).Google Scholar
8. Clauws, P., Vanden Steen, K., Broeckx, J. and Schoenmaekers, W. in: Defects and Radiation Effects in Semiconductors-1978 (Institute of Physics, 1979), p. 218.Google Scholar
9. Darken, L. S., J. Appl. Phys. 53, 3754 (1982).Google Scholar
10. van der Pauw, L. J., Philips Res. Rep. 13, 1 (1958).Google Scholar
11. For a brief discussion see Sze, S. M. in: Physics of Semiconductor Devices (John Wiley and Sons, New York 1981) p. 45;Google Scholar
11afor a more extended treatment, see Putley, E. H., The Hall Effect and Related Phenomena (Butterworth, Inc., Washington, D.C. 1960).Google Scholar
12. For a recent review of photoluminescence see Dean, P. J., Prog. Crystal Growth Charact. 5, 89 (1982).Google Scholar
13. Tajima, M., Masui, T., Abe, T. and Iizuka, T. in: Semiconductor Silicon – 1981 (The Electrochemical Society, New Jersey 1981) p. 72.Google Scholar
14. Itoh, D., Namba, I. and Yatsurugi, Y., this volume.Google Scholar
15. Hall, R. N., IEEE Trans. Nucl. Sci. 21, 260 (1974);Google Scholar
15a Bykova, E. M., Goncharov, L. A., Lifshits, T. M., Sidorov, V. I. and Hall, R. N., Sov. Phys. Semicond. 9, 1223 (1976).Google Scholar
16. Haller, E. E. and Hansen, W. L., Solid State Commun. 15, 687 (1974);CrossRefGoogle Scholar
16a Haller, E. E., Hansen, W. L., Hubbard, G. S. and Goulding, F. S., IEEE Trans. Nuci. Sci. 23, No. 1, 81 (1976).Google Scholar
17. For a low concentration (∼107 cm−3 ) limit to this argument see Kogan, Sh. M., Sov. Phys. Semicond. 7, 828 (1973), and ref. 1.Google Scholar
18. Hall, R. N. and Soltys, T. J., IEEE Trans. Nucl. Sci. NS- 18, No. 1, 160 (1971).CrossRefGoogle Scholar
19. Skolnick, M. S., Eaves, L., Stradling, R. A., Portal, J. G. and Askenazy, S., Solid State Commun. 15, 1403 (1974).CrossRefGoogle Scholar
20. Darken, L. S. and Hyder, S. A., submitted for publication.Google Scholar
21. Bykova, E. M., Lifshits, T. M. and Sidorov, V. I., Sov. Phys. Semicond. 7, 671 (1973).Google Scholar
22. Haller, E. E., Hansen, W. L. and Goulding, F. S., IEEE Trans. Nucl. Sci. NS-22, No. 1, 127 (1975).Google Scholar
23. Bykova, E. M., Iglitsyn, M. I., Kurkova, E. A., Levinzon, D. I., Sidorov, V. I. and Shersdel, V. A., Industrial Laboratory 42, 554 (1976).Google Scholar
23a. Burton, C. H., J. Electrical and Electroncis Engineering, Australia 1, 14, (1981).Google Scholar
24. Jongbloets, H. W. H. M., Stoelinga, J. H. M., van de Steeg, M. J. H. and Wyder, P., Physica 89B, 18 (1977).Google Scholar
25. Hall, R. N., Inst. Phys. Conf. Ser. 23, 190 (1975).Google Scholar
26. Hall, R. N. and Soltys, T. J., IEEE Trans. Nucl. Sci., NS-25, No. 1, 385 (1978).Google Scholar
27. Haller, E. E., Phys. Rev. Lett. 40, 584 (1978).CrossRefGoogle Scholar
28. Haller, E. E., Joos, B. and Falicov, L. M., Phys. Rev. B 21, 4729 (1980).Google Scholar
29. Joos, B., Haller, E. E. and Falicov, L. M., Phys. Rev. B 22, 832 (1980).Google Scholar
30. Haller, E. E. and Falicov, L. M., Phys. Rev. Lett. 41, 1192 (1978).Google Scholar
31. For a review of the optical characterization of deep levels, see Monemar, B. and Grimmeiss, H. G., Prog. Crystal Growth Charact. 5, 47 (1982).Google Scholar
32. Haller, E. E., Hubbard, G. S., Hansen, W. L. and Seeger, A., Inst. Phys. Conf. Ser. 31, 309 (1977).Google Scholar
33. Baron, R., Young, M. H., Neeland, J. K. and Marsh, O. J. in: Semiconductor Silicon – 1977 (The Electrochemical Society, New Jersey 1977) p. 367.Google Scholar
34. Haller, E. E., Li, P. P., Hubbard, G. S. and Hansen, W. L., IEEE Trans. Nucl. Sci. NS-26, No. 1, 265 (1979).Google Scholar
35. For a more complete treatment of DLTS, see Miller, G. L., Lang, D. and Kimerling, L. C., Ann. Rev. Mat. Sci. 7, 377 (1977).Google Scholar
36. Evwaraye, A. O., Hall, R. N. and Soltys, T. J., IEEE Trans. Nucl. Sci. NS- 26, No. 1, 271 (1979)Google Scholar
37. Miller, G. L., Ramirez, J. V. and Robinson, D. A. H., J. Appl. Phys. 46, 2638 (1975).Google Scholar
38. Hall, R. N., Inst. Phys. Conf. Ser. 23, 190 (1975).Google Scholar
39. For further evidence of Cu-related deep level contamination in highpurity germanium see also G. S. Hubbard, this volume.Google Scholar
40. Pehl, R. H., Madden, N. W., Elliott, J. H., Raudorf, T. W., Trammell, R. C. and Darken, L. S. Jr., IEEE Trans. Nucl. Sci. NS- 26, No. 1, 321 (1979).Google Scholar
41. Guldberg, J., Appl. Phys. Lett. 31, 578 (1977).CrossRefGoogle Scholar
42. Kim, C., Kim, H., Yusa, A. and Miki, S., IEEE Trans. Nucl. Sci. NS- 26, No. 1, 292 (1979).Google Scholar
43. Graff, K. and Pieper, H. in: Semiconductor Silicon - 1981 (The Electrochemical Society, New Jersey 1981) p. 331.Google Scholar
44. Weber, E. and Riotte, H. G., Appl. Phys. Lett. 33, 433 (1978).Google Scholar
45. Rijks, H. J., Bloem, J. and Giling, L. J., J. Appl. Phys. 50, 1370 (1979).Google Scholar
46. Graff, K. and Pieper, H., J. Electrochem. Soc. 128, 669 (1981);Google Scholar
46a Ward, P. J., J. Electrochem. Soc. 129, 2573 (1982).Google Scholar
47. See, for example, Grove, A. S., Physics and Technology of Semiconductor Devices (John Wiley and Sons, New York 1967).Google Scholar
48. Hyder, S. A., EG&G ORTEC, Oak Ridge, TN, private communication.Google Scholar
49. These effects have been discussed by Tove, P. A., Hyder, S. A. and Susila, G., Solid State Electron. 16, 513 (1973).Google Scholar
50. Hall, R. N., Appl. Phys. Lett. 29, 202 (1976).Google Scholar
51. For a discussion of the problems encountered in drifting lithium through germanium, see Semiconductor Nuclear Particle Detectors and Circuits, Brown, W. L., Higinbotham, W. A., Miller, G. L. and Chase, R. L., eds. (National Academy of Science, Washington 1969) p. 207.Google Scholar
52. See also Glasow, P., this volume.Google Scholar
53. For example, see Jastrzebski, L. and Zanzucchi, P. in: Semiconductor Silicon – 1981 (The Electrochemical Society, New Jersey 1981) p. 138.Google Scholar
54. For a review of these defects, see de Kock, A. J. R. in Crystal Growth and Material, Kaldis, E. and Scheel, H. J., eds. (North-Holland, New York 1977) p. 662.Google Scholar
55. Marchand, R. L., Stivers, A. R. and Sah, C. T., J. Appl. Phys. 48, 2576 (1977).CrossRefGoogle Scholar
56. Haller, E. E., Inst. Phys. Conf. Ser. 46, 205 (1979).Google Scholar
57. Pearton, S. J., Appl. Phys. Lett. 40, 253 (1982).Google Scholar
58. Frank, R. C. and Thomas, J. E., J. Phys. Chem. Solids 16, 144 (1960).Google Scholar
59. Hansen, W. L. and Haller, E. E., IEEE Trans. Nucl. Sci. NS- 21, No. 1, 251 (1974).Google Scholar
60. Oxygen related thermal donors, which would be generated by this thermal sequence, have been observed only in oxygen-doped germanium [0] > 1016 cm−3. See, for example, P. Clauws, J. Broeckx, E. Simoen, and J. Vennik, Solid State Commun., to be published.+1016+cm−3.+See,+for+example,+P.+Clauws,+J.+Broeckx,+E.+Simoen,+and+J.+Vennik,+Solid+State+Commun.,+to+be+published.>Google Scholar
61. Fox, R. J., IEEE Trans. Nucl. Sci. NS- 13, No. 1, 367 (1966).Google Scholar
62. Darken, L. S. Jr., J. Electrochem. Soc. 126, 827 (1979),Google Scholar
62a Darken, L. S. Jr., J. Electrochem. Soc, 129, 226 (1982).Google Scholar
63. Reiss, H., Fuller, C. S. and Morin, F. J., Bell Syst. Tech. J. 25, 535 (1956).Google Scholar
64. Kroger, F. A., The Chemistry of Imperfect Crystals (North-Holland, Amsterdam 1964).Google Scholar
65. Reiss, H. and Fuller, C. S., Trans. Am. Inst. Min. Metall. Pet. Eng. 206, 276 (1956).Google Scholar
66. Darken, L. S., IEEE Trans. Nucl. Sci. NS- 26, No. 1, 324 (1979).Google Scholar
67. Fitzner, K., Jacob, K. T. and Alcock, C. B., Metal. Trans. B 8B, 669 (1977).Google Scholar
68. Otsuka, S., Sano, T. and Kozuka, Z., Metal. Trans. B 12B, 427 (1981).Google Scholar
69. Kaiser, W. and Thurmond, C. D., J. Appl. Phys. 32, 115 (1961).Google Scholar
70. Millett, E. J., Wood, L. S. and Bew, G., Br. J. Appl. Phys. 16, 1593 (1965).Google Scholar
70. Edwards, W. D., J. Electrochem. Soc. 115, 753 (1968).Google Scholar
71. Yatsurugi, Y., Endo, N. Akiyama and Nozaki, T., J. Electrochem. Soc. 120, 975 (1973).Google Scholar
72. Hall, R. N., IEEE Trans. Nucl. Sci. NS-19, No. 1, 266 (1972).Google Scholar
73. For a review of the present status of experimental methods and results on the electrical properties of dislocations see Queisser, H. J. in: Defects in Semiconductors, Mahajan, S. and Corbett, J. W. eds. (North-Holland, New York 1983).Google Scholar
73aSee also Hunfeld Symposium: J. de Physique 40, Suppl. C6 (1979).Google Scholar
74. Shockley, W., Phys. Rev. 91, 228 (1953).Google Scholar
75. Read, W. T., Phil. Mag. 45, 775 (1954); 45, 119 (1954); 46, 111 (1955).Google Scholar
76. Ray, I. L. F. and Cockayne, D. J. H., Proc. Roy. Soc. A 32, 593 (1971).Google Scholar
77. Packeiser, G. and Haasen, P., Phil. Mag. 35, 821 (1977).Google Scholar
78. Marklund, S., Phys. Stat. Sol.(b) 92, 83 (1979).Google Scholar
79. Jones, R., J. de Physique 40, Suppl. C6, 33 (1979).Google Scholar
80. Schroter, W., Schiebe, E. and Schoen, H., J. of Microscopy 118 pt. 1, 22 (1980).Google Scholar
81. Kimerling, L. C. and Patel, J. R., Appl. Phys. Lett. 34, 73 (1979).Google Scholar
82. Patel, J. R. and Kimerling, L. C. in: Defects in Semiconductors, Narayan, J. and Tan, T. Y. eds. (North-Holland, New York 1981) p. 273.Google Scholar
83. Schoen, H., Doctoral Thesis, Gottinger (1979). See also Ref. 80.Google Scholar
84. Ourmazd, A. and Booker, G. R., Phys. Stat. Sol.(a) 55, 771 (1979).Google Scholar
85. Labusch, R. and Schroter, W. in: Dislocation in Solids, Nabarro, F. R. N. ed. (North-Holland, New York).Google Scholar
86. Glasow, P. A. and Haller, E. E., IEEE Trans. Nucl. Sci. NS- 23, 92 (1976).Google Scholar
87. Hubbard, G. S., Haller, E. E. and Hansen, W. L., IEEE Trans. On Nucl. Sci. NS- 26, No. 1, 303 (1979).Google Scholar
88. Hubbard, G. S. and Haller, E. E., J. Electron. Mater. 9, 51 (1980).Google Scholar
89. Schroter, W., J. de Physique 40, Suppl. C6, 51 (1979).Google Scholar
90. Patel, J. R. and Kimerling, L. C. in: Defects in semiconductors. Narayan, J. and Tan, T. Y. eds. (North-Holland, New York 1981) p. 273.Google Scholar
91. Holt, D. B., J. de Physique 40, Suppl. C6, 189 (1979).Google Scholar
92. Tweet, A. G., Phys. Rev. 106, 221 (1957).Google Scholar
93. Cullis, A. G. and Katz, L. E., Phil. Mag. 30, 1419 (1974).Google Scholar
94. Bull, C., Ashburn, P., Booker, G. R. and Nicholas, K. H., Solid State Electron. 22, 95 (1979).Google Scholar
95. Koji, T., Tseng, W. F. and Mayer, J. W., Appl. Phys. Lett. 32, 749 (1978).Google Scholar
96. Varker, C. J. and Ravi, K. V., J. Appl. Phys. 45, 272 (1974).Google Scholar
97. Ravi, K. V., Varker, C. J. and Volk, C. E., J. Electrochem. Soc. 120, 533 (1973).Google Scholar
98. Hall, R. N., General Electric, Schenectady, NY, private communication.Google Scholar
99. Westbrook, R. D., Nucl. Instr. and Meth. 108, 335 (1973).Google Scholar
100. Busta, H. H. and Waggener, H. A., J. Electrochem. Soc. 124, 1424 (1977).Google Scholar
101. Goetzberger, A. and Shockley, W., J. Appl. Phys. 31, 1821 (1960).Google Scholar
102. Hsu, S. T., whittier, R. J. and Mead, C. A., Solid State Electron. 13, 1055 (1970).Google Scholar
103. Figielski, T., Solid State Electron. 21, 1403 (1978).Google Scholar
104. Darken, L. S., Trammell, R. C., Raudorf, T. W., Pehl, R. H. and Elliott, J. H., Nucl. Instr. and Meth. 171, 49 (1980).Google Scholar
105. Fong, A., Walton, J. T., Haller, E. E., Sommer, H. A. and Guldberg, J., submitted to Nucl. Instr. Meth.Google Scholar
106. Walton, J. T. and Haller, E. E., this volume.Google Scholar
107. Hansen, W. L., this volume.Google Scholar
108. Itoh, D., Namba, I. and Yatsurugi, Y., this volume.Google Scholar