Hostname: page-component-cd9895bd7-mkpzs Total loading time: 0 Render date: 2024-12-27T01:50:17.925Z Has data issue: false hasContentIssue false

Characterization of GaS-Passivated Quantum-Well Laser Diodes

Published online by Cambridge University Press:  10 February 2011

L. G. Vaughn
Affiliation:
Center for High Technology Materials, University of New Mexico, 1313 Goddard S. E., Albuquerque, NM 87106
T. C. Newell
Affiliation:
Center for High Technology Materials, University of New Mexico, 1313 Goddard S. E., Albuquerque, NM 87106
L. F. Lester
Affiliation:
Center for High Technology Materials, University of New Mexico, 1313 Goddard S. E., Albuquerque, NM 87106
A. N. Macinnes
Affiliation:
TriQuint Semiconductor, 2300 N. E. Brookwood Parkway, Hillsboro, OR 97124
Get access

Abstract

The degradation of AlGaAs/GaAs diode laser performance during operation is typically due to catastrophic optical damage of the facets caused when thermal runaway occurs. These heating effects are due to the presence of non-radiative recombination sites at and near the facets. MOCVD GaS is deposited on the facets of 825-nm ridge waveguide AlGaAs/GaAs quantumwell laser diodes as an electronic passivation to reduce the number of surface states available for non-radiative recombination. For passivated devices, a peak pulsed power nearly double that of unpassivated devices was achieved. The passivated devices also exhibit a longer lifetime before degradation. The impact of the passivation process on other optical characteristics of the laser diodes will also be discussed.

Type
Research Article
Copyright
Copyright © Materials Research Society 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Henry, C. H., Petroff, P. M., Logan, R. A., and Merritt, F. R., J. Appl. Phys. 50, p. 37213722 (1979).Google Scholar
2. Tang, W. C., Rosen, H. J., Vettiger, P., and Webb, D. J., Appl. Phys. Lett. 58, p. 557559 (1991).Google Scholar
3. Tang, W. C., Rosen, H. J., Vettiger, P., and Webb, D. J., Appl. Phys. Lett. 59, p. 10051007 (1991).Google Scholar
4. Gerardi, G. J., Rong, F. C., Poindexter, E. H., Harmatz, M., Shen, H., and Warren, W. L., in Amorphous Insulating Thin Films, edited by J., Kanicki, Warren, W. L., Devine, R. A. B., and Matsumura, M. (Mat. Res. Soc. Symp. Proc. 284, Pittsburgh, PA 1993) pp. 601606.Google Scholar
5. Remashan, K. and Bhat, K. N., Electron. Left. 32, pp. 694695 (1996).Google Scholar
6. Charache, G. W., Akram, S., Maby, E. W., and Bhat, I. B., IEEE Trans. Electron. Devices 44, p.18371842 (1997).Google Scholar
7. Sandroff, C. J., Nottenburg, R. N., Bischoff, J. C., and Bhat, R., Appl. Phys. Lett. 51, p. 3335 (1987).Google Scholar
8. Sandroff, C. J., Hegde, M. S., Farrow, L. A., Bhat, R., Harbison, J. P., and Chang, C. C., J. Appl. Phys. 67, p. 586588 (1990).Google Scholar
9. Chand, N., Hobson, W. S., deJong, J. F., Parayanthal, P., and Chakrabarti, U. K., Electron. Lett. 32, p. 15951596 (1996).Google Scholar
10. Maclnnes, A. N., Power, M. B., Barron, A. R., Jenkins, P. P., and Hepp, A. F., Appl. Phys. Lett. 62, p. 711713 (1993).Google Scholar
11. Tabib-Azar, M., Kang, S., MaclInnes, A. N., Power, M. B., Barron, A. R., Jenkins, P. P., and Hepp, A. F., Appl. Phys. Lett. 63, p. 625627 (1993).Google Scholar
12. Kawanishi, H., Ohno, H., Morimoto, T., Kaneiwa, S., Miyauchi, N., Hayashi, H., Akagi, Y., Nakajima, Y., and Hijikata, T., 21sst Conference on Solid State Devices and Materials, Tokyo, 1989, pp. 337340.Google Scholar
13. Ohno, H., Kawanishi, H., Akagi, Y., Koba, M., and Hijikata, T., (Mat. Res. Soc. Symp. Proc. 204, Pittsburgh, PA 1991) p. 65.Google Scholar
14. Guel, G., Armour, E. A., Sun, S. Z., Srinivasn, S. T., Malloy, K. J., and Hersee, S. D., J. Electron. Mater. 21, p. 1051 (1992).Google Scholar
15. Yoo, J. S., Lee, H. H., and Zory, P., IEEE Photon. Technol. Lett. 3, p. 202203 (1991).Google Scholar
16. MacInnes, A.N., Power, M.B., and Barron, A.R., Chem. Mater. 4, p. 1114 (1992).Google Scholar