Hostname: page-component-586b7cd67f-t8hqh Total loading time: 0 Render date: 2024-11-25T17:41:44.138Z Has data issue: false hasContentIssue false

Characterization of Erbium Doped SiO2 Layers Formed On Silicon By Spark Processing

Published online by Cambridge University Press:  10 February 2011

John V. St. John
Affiliation:
Department of Chemistry, Texas Christian University Ft. Worth, TX 76129
Jeffery L. Coffer
Affiliation:
Department of Chemistry, Texas Christian University Ft. Worth, TX 76129
Young Gyu Rho
Affiliation:
Department of Materials Science, University of North Texas, Denton, TX 76203
Patrick Diehl
Affiliation:
Department of Materials Science, University of North Texas, Denton, TX 76203
Russell F. Pinizzotto
Affiliation:
Department of Materials Science, University of North Texas, Denton, TX 76203
Thomas D. Culp
Affiliation:
Department of Chemical Engineering, University of Wisconsin, Madison, WI 53706.
Kevin L. Bray
Affiliation:
Department of Chemical Engineering, University of Wisconsin, Madison, WI 53706.
Get access

Abstract

Deposition of a rare earth salt layer on a silicon substrate with subsequent spark processing yields a porous Si layer and SiO 2 cap doped with the rare earth ion. We have characterized luminescent Er-doped porous SiO2 on Si by scanning electron microscopy, energy dispersive Xray spectroscopy, as well as visible and near IR photoluminescence (PL) spectroscopies. Energydispersive x-ray maps indicate that the erbium concentration in the porous layer can be controlled by varying the molarity of the erbium solution deposited on the substrate prior to spark processing. Visible PL measurements reveal that the concentration of Er3+ is proportional to the resultant intensity of the visible fluorescence transitions; however, for the near IR fluorescence peak at 1.54 gim, self-quenching due to erbium clustering occurs at higher concentrations. Erbium-doped porous silicon layers can also be obtained by diffusion of an erbium salt into porous silicon formed by anodic etching of Si in hydrofluoric acid. Densification of the porous Si layers through high temperature oxidation after erbium diffusion forms erbium-doped SiO2 layers.

Type
Research Article
Copyright
Copyright © Materials Research Society 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Ennen, H., Schneider, J., Pomrenke, G., Axmann, A., Appl. Phys. Lett. 90, 943 (1983).Google Scholar
2. Ennen, H., Pomrenke, G., Axmann, A., Eisele, K., Haydl, W., Schneider, J., Appl. Phys. Lett. 46, 381 (1985).Google Scholar
3. Benton, J. L., Michel, J., Kimerling, L. C., Jacobson, D. C., Xie, Y. H., Eaglesham, D. J., Fitzgerald, E. A., Poate, J. M., J. Appl. Phys. 70, 2667 (1991).Google Scholar
4. Adler, D. L., Jacobsen, D. C., Eaglesham, D. J., Marcus, M. A., Benton, J. L., Poate, J. M., Citrin, P. H., Appl. Phys. Lett. 61, 2181 (1992).Google Scholar
5. Coffa, S., Franzà, G., Priolo, F., Polman, A., Serna, R., Phys. Rev. B 49, 313 (1994).Google Scholar
6. Lombardo, S., Campisano, S. U., van den Hoven, G. N., Polman, A., Nucl. Instrum. Methods B. 96, 378 (1995).Google Scholar
7. Namavar, F., Lu, F., Perry, C. H., Cremins, A., Kalkhoran, N. M., Soref, R. A., J. Appl. Phys. 77, 4813, (1995).Google Scholar
8. Hömmerich, U., Namavar, F., Cremins, A., Bray, K., Appl. Phys. Lett. 68, 1951 (1996).Google Scholar
9. Lin, J., Zhang, L. Z., Huang, Y. M., Zhang, B. R., Qin, G. G., Appl. Phys. Lett. 64, 3282 (1994); T. Kimura, A. Yokoi, H. Horiguchi, R. Saito, T. Ikoma, A. Sato, Appl. Phys. Lett. 65, 983 ( 1994 ).Google Scholar
10. J. V. St. John, Coffer, J. L., Rho, Y. G., Pinizzotto, R. F., Appl. Phys. Lett. 68, 3416 (1996).Google Scholar
11. Hummel, R. E., Chang, S-S., Appl. Phys. Lett. 61, 1965 (1992).Google Scholar
12. Hummel, R. E., Morrone, A., Ludwig, M. H., Chang, S-S., Appl. Phys. Lett. 63, 2771 (1993).Google Scholar
13. Hummel, R. E., Ludwig, M. H., J. Lumin. 68, 69 (1996).Google Scholar
14. Priolo, F., Coffa, S., Franzo, G., Spinella, C., Camera, A., Bellani, V., J. Appl. Phys. 74, 4936 (1993).Google Scholar
15. Polman, A., van den Hoven, G. N., Cluster, J. S., Shin, J. H., Sema, R., Alkemade, P. F., J. Appl. Phys. 77, 1256 (1995).Google Scholar
16. Loni, A., Bozeat, R., Krueger, M., Berger, M., Arens-Fischer, R., Thoenissen, M., Arrand, H., and Benson, T., presented at the IEE colloqium “Microengineering Applications in Opto-electronics, 27 February 1996.Google Scholar