Hostname: page-component-586b7cd67f-r5fsc Total loading time: 0 Render date: 2024-11-25T17:35:05.008Z Has data issue: false hasContentIssue false

Characterization of Doped Diamondlike Carbon Films and Multilayers

Published online by Cambridge University Press:  22 February 2011

H.C. hofsäss
Affiliation:
Universität Konstanz, Fakultät fíir Physik, Postfach 5560, D-78434 Konstanz, Germany
J. Biegel
Affiliation:
Universität Konstanz, Fakultät fíir Physik, Postfach 5560, D-78434 Konstanz, Germany
C. Ronning
Affiliation:
Universität Konstanz, Fakultät fíir Physik, Postfach 5560, D-78434 Konstanz, Germany
R.G. Downing
Affiliation:
National Institute of Standards and Technology, Nuclear Methods Group, Gaithersburg, MD 20899, USA
G.P. Lamaze
Affiliation:
National Institute of Standards and Technology, Nuclear Methods Group, Gaithersburg, MD 20899, USA
Get access

Abstract

We have grown doped diamondlike carbon (DLC) thin films on Ni and Si substrates by mass separated low energy ion beam deposition. The current-voltage characteristics of these films and also a P-doped DLC / B-doped DLC diode-like device were measured. Doped DLC films show a higher electrical conductivity, which we interpret by hopping conductivity due to an increased density of localized states rather than a shift of the Fermi level. We also present first results on doping modulated DLC multilayers deposited on Si substrates. The dopant concentration profiles were analyzed by Rutherford Backscattering for 63Cu dopant atoms and by neutron depth profiling for a 10B doped multilayer.

Type
Research Article
Copyright
Copyright © Materials Research Society 1994

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1 Robertson, J., Phil. Transact.: Physical Sciences and Engineering 342, 277 (1993).Google Scholar
2 Lettington, A.H., Phil. Transact.: Physical Sciences and Engineering 342, 287 (1993).Google Scholar
3 Wang, C.Z., Ho, K.M., Phys. Rev. Lett. 71, 1184 (1993).Google Scholar
4 Kelires, P.C., Phys. Rev. B 47, 1829 (1993).Google Scholar
5 McKenzie, D.R., Muller, D. and Pailthorpe, B.A., Phys. Rev. Lett. 67, 773 (1991).Google Scholar
6 Meyerson, B. and Smith, F.W., Solid State Commun. 41, 23 (1982).Google Scholar
7 Jones, D.I. and Stewart, A.D., Phil. Mag. B 46, 423 (1982).Google Scholar
8 Amir, O. and Kalish, R., J. Appl. Phys. 70, 4958 (1991).Google Scholar
9 Mansour, A. and Ugolini, D., Phys. Rev. B 47, 10201 (1993).Google Scholar
10 Rohwer, K., Hammer, P., Thiele, J.U., Gissler, W., Blaudeck, P., Frauenheim, T., Meissner, D., J. Non-Cryst. Sol. 137&138, 843 (1991).Google Scholar
11 Robertson, J. and O’Reilly, E.P., Phys. Rev. B 35, 2946 (1987).Google Scholar
12 Veerasamy, V.S., Amaratunga, G.A.J., Davies, C.A., Timbs, A.E., Milne, W.I. and McKenzie, D.R., J. Phys. C: Condens. Matter 5, L169 (1993).Google Scholar
13 Dasgupta, D., Demichelis, F., Tagliaferro, A., Phil. Mag. B 63, 1255 (1991).Google Scholar
14 Hofsäss, H., Binder, H., Klumpp, T., Recknagel, E., Diamond & Relat. Mater. 3, 137 (1994).Google Scholar
15 Fallon, P.J., Veerasamy, V.S., Davis, C.A., Robertson, J., Amaratunga, G.A.J., Milne, W.I., Koskinen, J., Phys. Rev. B 48, 4777 (1993).Google Scholar
16 Lamaze, G.P., Downing, R.G., Langland, J.K., Hwang, S.T., J. Radioanal. Nucl. Chem. 160, 315 (1992).Google Scholar
17 Doolittle, L.R., Nucl. Instr. Meth. B 15, 227 (1986).Google Scholar