Hostname: page-component-78c5997874-dh8gc Total loading time: 0 Render date: 2024-11-05T17:13:30.188Z Has data issue: false hasContentIssue false

Characterization of Dielectric Layers on Hydrogen Passivated Si Surfaces

Published online by Cambridge University Press:  28 February 2011

J. A. Gregory
Affiliation:
Mobil Solar EnergyCorporation, 16 Hickory Drive, Waltham, Massachusetts 02254
C. E. Dubé
Affiliation:
Mobil Solar EnergyCorporation, 16 Hickory Drive, Waltham, Massachusetts 02254
J. I. Hanoka
Affiliation:
Mobil Solar EnergyCorporation, 16 Hickory Drive, Waltham, Massachusetts 02254
Z. Y. Vayman
Affiliation:
Mobil Solar EnergyCorporation, 16 Hickory Drive, Waltham, Massachusetts 02254
Get access

Abstract

We have Investigated the layer formed on Si surfaces passivated by a Kaufman Ion source using mixtures of hydrogen and hydrocarbons. Chemical, optical, and electronic techniques were employed to characterize this layer and Its effect on passivation of defects in the Si. The evidence Indicates that the layer Is a dielectric and probably has the formula Six C(1-x) (H). It does not appear to Impede the passivation of polycrystalline Si, but it does affect the reflectivity of the Si material, and also the barrier height In Schottky junctions. We suggest that a similar layer may be formed during other hydrogen/hydrocarbon plasma treatments of SI.

Type
Research Article
Copyright
Copyright © Materials Research Society 1986

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Micheels, R.H., Vayman, Z., and Hanoka, J.I., Appl. Phys. Lett., 46(4), 414 (1985).CrossRefGoogle Scholar
2. Seager, C.H. and Ginley, D.S., Appl. Phys. Lett., 34(5), 337 (1979).CrossRefGoogle Scholar
3. Hanoka, J.I., Seager, C.H., Sharp, D.J., and Panitz, J.K.G., Appl. Phys. Lett. 42, 618 (1983).CrossRefGoogle Scholar
4. Meier, D.L., Rohatgi, A., Campbells, R.B. Alexander, P., Fonash, S.J., and Singh, R., 16th IEEE Photovoltaics Special ists Conference (IEEE: New York; 1984). p. 427.Google Scholar
5. Hanoka, J.I., DubS, C., and Sandstrom, D.B., in Microscopic Identification of Electronic Defects In Semiconductors, edited by Johnson, Noble M., Bishop, Stephen B., and Watkins, George D. (Materials Research Society: Pittsburgh; 1985), p. 553.Google Scholar
6. Wald, F.V., In: Crystals. Growth Properties and Applications 5, edited by Grabmaler, J. (Springer: Berlin; 1981)o p. 147.Google Scholar
7. Micheels, Ronald H. and Rauh, R. David, J. Electrochem. Soc., 131, 217 (1984).CrossRefGoogle Scholar
8. Handbook of Photoelectron Spectroscopy, edited by Wagner, C.D., Riggs, W.M., Davis, L.E., Moulder, J.F., Muilenberg, G.E. (Perkin-Elmer Corp.: Eden Pralrle, MN; 1979).Google Scholar
9. Coyle, George J. Jr., and Oehrlein, Gottlieb S., Appl. Phys. Lett., 47, 604 (1985).CrossRefGoogle Scholar
10. Mu, X.C. and Fonash, S.J., IEEE Elec. Dev. Lett., EDL–6, 410 (1985).CrossRefGoogle Scholar
11. Frieser, R.G., Montillo, F.J., Zingerman, N.B., Chu, W.K., and Mader, S.R., J. Electrochem. Soc., 13, 2237 (1983).CrossRefGoogle Scholar
12. Pang, S.W., Rathman, D.D., Silversmith, D.J., Mountain, R.W., and DeGraff, P.D., J. Appl. Phys., 54, 3272 (1983).CrossRefGoogle Scholar
13. Jellison, G.E., Jr. and Modine, F.A., J. Appl. Phys., 53, 3745 (1982).CrossRefGoogle Scholar
14. Brice, D.K., private communication.Google Scholar
15. Fonash, Stephen J., Ashok, S., and Singh, Ranbir, Appl. Phys. Lett., 39, 423 (1981).CrossRefGoogle Scholar
16. Aisenberg, S., J. Vac. Soc. Technol., A2, 369 (1984).CrossRefGoogle Scholar