Hostname: page-component-78c5997874-m6dg7 Total loading time: 0 Render date: 2024-11-19T06:10:30.984Z Has data issue: false hasContentIssue false

Characterization of Defects and Interfaces by the Ion Channeling Technique

Published online by Cambridge University Press:  25 February 2011

W. K. Chu
Affiliation:
University of North Carolina, Dept. of Physics and Astronomy, Chapel Hill, NC 27514
S. T. Picraux
Affiliation:
Sandia National Laboratories, Albuquerque, NM 87185
Get access

Abstract

Channeling of fast, light ions in crystals has been widely used as a tool for studying crystal defects. This subject has been reviewed earlier at MRS-1980. During MRS-1980, principles of ion channeling, and examples of channeling analysis on bulk defects and surface structures, lattice location of impurities, and clustering phenomena were given. In this review, we give a brief overview of defect studies by the channeling technique and then elaborate on recent developments in channeling analysis of interfacial structure. The ion beam channeling technique permits characterization of heteroepitaxial growth starting at monolayer coverages and allows quantitative measurement of the lattice strain in heteroepitaxial layers. The strain analysis has been developed for multilayer structures and, for example, the tetragonal distortions of strained-layer superlattices can be determined for lattice mismatches as low as 0.2% corresponding to lattice distortions of 0.01Å.

Type
Research Article
Copyright
Copyright © Materials Research Society 1985

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Stark, J., Physik. Z. 13, 973 (1912).Google Scholar
2. Robinson, M. T. and Oen, O. S., Phys. Rev. 132, 2385 (1963).10.1103/PhysRev.132.2385CrossRefGoogle Scholar
3. Lindhard, J., Kgl. Danske Videnskab. Selskab. Mat.-Fys. Medd. 34, N° 14 (1965).Google Scholar
4. Gemmel, D. S., Rev. Mod. Phys. 46, N° 1,129 (1974).10.1103/RevModPhys.46.129Google Scholar
5. Channeling, Ed. Morgan, D. V., John Wiley and Sons, NY (1973).Google Scholar
6. Feldman, L. C., Mayer, J. W., and Picraux, S. T., Materials Analysis by Ion Channeling, Academic Press (1982).Google Scholar
7. Appleton, B. R., p.97 in Defects in Semiconductor edited by Narayan, J. and Tan, T. Y., MRS Symp. Proc. Vol.2, North Holland (1980).Google Scholar
8. Chu, W. K., p. 117, MRS Symp. Proc. Vol.2, North Holland (1980).Google Scholar
9. Picraux, S. T., p. 135, MRS Symp. Proc. Vol.2, North Holland (1980).Google Scholar
10. Chu, W. K., .Mayer, J. W. and Nicolet, M-A., Backscattering Spectrometry, Academic Press, New York (1978).10.1016/B978-0-12-173850-1.50008-9CrossRefGoogle Scholar
11. Chu, W. K., Mayer, J. W., Nicolet, M-A., Buck, T. M., Amsel, G. and Risen, F., Thin Solid Films, 17, 1 (1973).10.1016/0040-6090(73)90002-3Google Scholar
12. Foti, G., Picraux, S. T., Rimini, E., Campasino, S. U., and Kant, R., in Ion Implantation in Semiconductors 1976, Ed. by Chernow, F., Borders, J. A. and Brice, D. K., Plenum Press, p. 247 (1977).10.1007/978-1-4613-4196-3_28Google Scholar
13. Campisano, S. U., Foti, G., Rimini, E. and Picraux, S. T., Nucl. Instr. and Methods, 149, 371 (1978).10.1016/0029-554X(78)90890-XGoogle Scholar
14. Foti, G., Csepregi, L., Kennedy, E. F., Mayer, J. W., Pronko, P. P. and Rechtin, M. D., Phil Mag. 37, 591 (1977).10.1080/01418617808239193Google Scholar
15. Foti, G., Csepregi, L., Kennedy, E. F., Pronko, P., and Mayer, J. W., Phys. Letter, 64A, 265 (1977).10.1016/0375-9601(77)90738-1Google Scholar
16. Feldman, L. C., Crit. Rev. in Solid State and Materials Sciences, 10(2), 143 (1981).10.1080/10408438108243631Google Scholar
17. Saris, F.W., Nucl. Inst. Methods 194, 625 (1982).10.1016/0029-554X(82)90594-8Google Scholar
18. Tromp, R.M., J. Vac. Sci. Technol. Al, 1047 (1983).10.1116/1.572340Google Scholar
19. Osbourn, G. C., Biefeld, R. M. and Gourley, P. L., Appl. Phys. Lett. 41, 172 [1982).10.1063/1.93450Google Scholar
20. Matthews, J. W. and Blakeslee, A. E., J. Vac. Sci. Technol., 41, 98 (1977).Google Scholar
21. Sarris, F. W., Chu, W. K., Chang, C. A., Ludeke, R. and Esaki, L., Appl. Phys. Lett. 37, 931 (1980).10.1063/1.91764Google Scholar
22. Chu, W. K., Saris, F. W., Chang, C. A., Ludeke, R. and Esaki, L., Phys. Rev. B 26, 1999 (1982).10.1103/PhysRevB.26.1999Google Scholar
23. Barrett, J. H., Appl. Phys. Lett., 40, 482 (1982).10.1063/1.93142Google Scholar
24. Barrett, J. H., Phys. Rev. B28, 2328 (1983).10.1103/PhysRevB.28.2328Google Scholar
25. Picraux, S. T., Biefeld, R. M., Dawson, L. R., Osbourn, G. C. and Chu, W. K., J. Vac. Sci. Technol. B1, 687 (1983); Appl. Phys. Lett.10.1116/1.582578Google Scholar
26. Picraux, S. T., Dawson, L. R., Osbourn, G. C. and Chu, U. K., Nucl. Inst. Methods 218, 87 (1983).Google Scholar
27. Chu, W. K., Pan, C. K. and Chang, C. A., Phys. Rev. B 28, 4033 (1983).10.1103/PhysRevB.28.4033Google Scholar
28. Pan, C. K., Zheng, D. C., Finstad, T. G., Chu, W. K., Speriosu, V. S., Nicolet, M-A. and Barrett, J. H., Phys. Rev. B, to be published.Google Scholar
29. Bean, J. C., Sheng, T. T., Feldman, L. C., Fiory, A.T. and Lynch, R. T., Appl. Phys. Lett. 44, 102 (1984).10.1063/1.94571Google Scholar
30. Chu, W. K., Ellison, J. A., Picraux, S. T., Biefeld, R. M., and Osbourn, G. C., Phys. Rev. Lett., 52, 125 (1984).10.1103/PhysRevLett.52.125Google Scholar