Hostname: page-component-586b7cd67f-dlnhk Total loading time: 0 Render date: 2024-11-23T13:23:21.321Z Has data issue: false hasContentIssue false

Characterization of Crustacyanin-A2 Subunit as a Component of the Organic Matrix of Gastroliths from the Crayfish Cherax quadricarinatus

Published online by Cambridge University Press:  31 January 2011

Gilles Luquet
Affiliation:
[email protected], Université de Bourgogne, UMR CNRS 5561 Biogéosciences, Dijon, France
Nathalie Le Roy
Affiliation:
[email protected], Université de Bourgogne, UMR CNRS 5561 Biogéosciences, Dijon, France
Isabelle Zanella-Cléon
Affiliation:
[email protected], Université Lyon 1 - Institut de Biologie et Chimie des Protéines, UMR CNRS 5086 Laboratoire de Spectrométrie de Masse, Lyon, France
Michel Becchi
Affiliation:
[email protected], Université Lyon 1 - Institut de Biologie et Chimie des Protéines, UMR CNRS 5086 Laboratoire de Spectrométrie de Masse, Lyon, France
Sergio Bucarey
Affiliation:
[email protected], University of Chile, Faculty of Veterinary and Animal Sciences and Centre for Advanced Interdisciplinary Research in Materials (CIMAT), Santiago de Chile, Chile
Maria Soledad Fernandez
Affiliation:
[email protected], University of Chile, Faculty of Veterinary and Animal Sciences and Centre for Advanced Interdisciplinary Research in Materials (CIMAT), Santiago de Chile, Chile
Jose Luis Arias
Affiliation:
[email protected], University of Chile, Faculty of Veterinary and Animal Sciences and Centre for Advanced Interdisciplinary Research in Materials (CIMAT), Santiago de Chile, Chile
Nathalie Guichard
Affiliation:
[email protected], Université de Bourgogne, UMR CNRS 5561 Biogéosciences, Dijon, France
Benjamin Marie
Affiliation:
[email protected], Université de Bourgogne, UMR CNRS 5561 Biogéosciences, Dijon, France
Frédéric Marin
Affiliation:
[email protected], United States
Get access

Abstract

Like the lobsters, some terrestrial crabs and other crayfishes, the Australian red claw crayfish, Cherax quadricarinatus, elaborates in its stomach wall calcium storage structures called gastroliths. For understanding the cyclic elaboration and stabilization of these amorphous calcified structures, we studied the organic matrix (OM) of these paired biomineralizations. After decalcification with acetic acid, we analysed the proteinaceous components of an acetic acid-insoluble fraction by two-dimensional electrophoresis. Nine spots were digested by trpsin and the tryptic peptides were sequenced by nanoLC-nanoESI-MS/MS mass spectrometry. About 100 peptidic sequences were compared to sequences previously registered in the databases. Seven of the partially sequenced organic matrix polypeptides are probably new proteins. Another one corresponds to the previously sequenced protein, GAP65, from Cherax quadricarinatus and the last one, which migrates in electrophoresis at around 25 kDa, presents strong homology with the crustacyanin-A2 subunit of Homarus gammarus.

Type
Research Article
Copyright
Copyright © Materials Research Society 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Luquet, G. and Marin, F., C.R. Palevol. 3, 515 (2004).10.1016/j.crpv.2004.07.015Google Scholar
2 Hikida, T., Nagasawa, H. and Koguret, T., in Biomineralization: formation, diversity, evolution and application, edited by Kobayashi, I. and Ozawa, H., (Tokai University Press, Kanagawa, 2003) pp. 8184.Google Scholar
3 Ishii, K., Yanagisawa, T. and Nagasawa, H., Biosci. Biotech. Biochem. 60, 1479 (1996).10.1271/bbb.60.1479Google Scholar
4 Ishii, K., Tsutsui, N., Watanabe, T., Yanagisawa, T. and Nagasawa, H., Biosci. Biotech. Biochem. 62, 291 (1998).10.1271/bbb.62.291Google Scholar
5 Tsutsui, N., Ishii, K., Takagi, Y., Watanabe, T. and Nagasawa, H., Zool. Sci. 16, 619 (1999).10.2108/zsj.16.619Google Scholar
6 Testenière, O., Hecker, A., Gurun, S. Le, Quennedey, B., Graf, F. and Luquet, G., Biochem. J. 361, 327 (2002).10.1042/bj3610327Google Scholar
7 Hecker, A., Testenière, O., Marin, F. and Luquet, G., FEBS Lett. 535, 49 (2003).10.1016/S0014-5793(02)03856-5Google Scholar
8 Hecker, A., Quennedey, B., O. Testenière, Quennedey, A., Graf, F. and Luquet, G., J. Struct. Biol. 146, 310 (2004).10.1016/j.jsb.2004.01.009Google Scholar
9 Canova, M.J., Veyron-Churlet, R., Zanella-Cleon, I., Cohen-Gonsaud, M., Cozzone, A.J., Becchi, M., Kremer, L. and Molle, V., Proteomics 8, 521 (2008).10.1002/pmic.200700442Google Scholar
10 Shechter, A., Berman, A., Singer, A., Freiman, A., Grinstein, M., Erez, J., Aflalo, E.D. and Sagi, A., Biol. Bull. 214, 122 (2008).10.2307/25066669Google Scholar
11 Shechter, A., Glazer, L., Cheled, S., Mor, E., Weil, S., Berman, A., Bentov, S., Aflalo, E.D., Khalaila, I. and Sagi, A., Proc. Natl. Acad. Sci. U.S.A,. 105, 7129 (2008).10.1073/pnas.0800193105Google Scholar
12 Travis, D.F., Biol. Bull. 118, 137 (1960).10.2307/1539064Google Scholar
13 Keen, J.N., Caceres, I., Eliopoulos, E.E., Zagalsky, P.F. and Findlay, J.B.C., Eur. J. Biochem,. 197, 407 (1991).10.1111/j.1432-1033.1991.tb15925.xGoogle Scholar