Hostname: page-component-78c5997874-m6dg7 Total loading time: 0 Render date: 2024-11-17T18:18:14.919Z Has data issue: false hasContentIssue false

Characterization of Carbon Nitride Films Produced by Pulsed Laser Deposition

Published online by Cambridge University Press:  21 February 2011

T. A. Friedmann
Affiliation:
Sandia National Laboratories, albuquerque, NM 87185 Sandia National Laboratories, Livermore, CA 94550
D. R. Tallant
Affiliation:
Sandia National Laboratories, albuquerque, NM 87185 Sandia National Laboratories, Livermore, CA 94550
J. C. Barbour
Affiliation:
Sandia National Laboratories, albuquerque, NM 87185 Sandia National Laboratories, Livermore, CA 94550
J. P. Sullivan
Affiliation:
Sandia National Laboratories, albuquerque, NM 87185 Sandia National Laboratories, Livermore, CA 94550
M. P. Siegal
Affiliation:
Sandia National Laboratories, albuquerque, NM 87185 Sandia National Laboratories, Livermore, CA 94550
R. L. Simpson
Affiliation:
Sandia National Laboratories, albuquerque, NM 87185 Sandia National Laboratories, Livermore, CA 94550
J. Mikkalson
Affiliation:
Sandia National Laboratories, albuquerque, NM 87185 Sandia National Laboratories, Livermore, CA 94550
K. F. McCarty
Affiliation:
Sandia National Laboratories, albuquerque, NM 87185 Sandia National Laboratories, Livermore, CA 94550
Get access

Abstract

Carbon Nitride (CNX) films have been grown by ion-assisted pulsed-laser deposition (IAPLD). Graphite targets were laser ablated while bombarding the substrate with ions from a broad-beam Kaufman-type ion source. the ion voltage, current density, substrate temperature, and feed gas composition (N2 in ar) have been varied. the resultant films were characterized by Raman, Fourier transform infrared (FTIR), and Rutherford back scattering (RBS) spectroscopy.

Samples with -30% N/C ratio have been fabricated. the corresponding Raman and FTIR spectra indicate that nitrogen is incorporated into the samples by insertion into sp2-bonded structures. a low level of C=N triple bonds is also found. as the ion current and voltage are increased with a pure ar ion beam, Raman peaks associated with nanocrystalline graphite appear in the spectr A. adding low levels of nitrogen to the ion beam first reduces the Raman intensity in the vicinity of the graphite disorder peak without adding detectable amounts of nitrogen to the films (as measured by RBS). at higher nitrogen levels in the ion beam, significant amounts of nitrogen are incorporated into the samples, and the magnitude of the "disorder" peak increases. by increasing the temperature of the substrate during deposition, the broad peak due mainly to sp2-bonded C-N in the FTIR spectra is shifted to lower wavenumber. This could be interpreted as evidence of single-bonded C-N; however, it is more likely that the character of the sp2 bonding is changing.

Type
Research Article
Copyright
Copyright © Materials Research Society 1995

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Liu, A. Y. and Cohen, M. L., Phys. Rev., B 41, 10727 (1990).Google Scholar
2 Rossi, F., Andr, B.é, Veen, A. v., Mijnarends, P. E., Schut, H., Labohm, F., Dunlop, H., Delplancke, M. P., and Hubbard, K., J. Mater. Res. 9, 2440 (1994).Google Scholar
3 Nakayama, N., Tsuchiya, Y., Tamada, S., Kosuge, K., Nagata, S., Takahiro, K., and Yamaguchi, S., Jpn. J. .Appl. Phys. 32, L1465 (1993).Google Scholar
4 Torng, C. J., Silvertsen, J. M., Judy, J. H., and Chang, C., J. Mater. Res. 5, 2490 (1990).Google Scholar
5 Diani, M., Mansour, A., Kubler, L., Bischoff, J. L., and Bolmont, D., Diamond and Rel. Mater. 3, 264 (1994).Google Scholar
6 Freire, F. L. Jr., Achete, C. A., Franceschini, D. F., Gatts, C., and Mariotto, G., Nucl. INstrum. Meth. Phys. Res. B80/81, 1464 (1993).Google Scholar
7 Ogata, K., Chubaci, J. F. D., and Fujimoto, F., J. appl. Phys. 76, 3791 (1994).Google Scholar
8 Seth, J., Padiyath, R., and Babu, S. V., Diamond Rel. Mater. 3, 210 (1994).Google Scholar
9 Friedmann, T. A., Siegal, M. P., Tallant, D. R., Simpson, R. L., and Dominguez, F., in Novel Forms of Carbon II, edited by Renschler, C. L., Cox, D., Pouch, J., and Achiba, Y. (Materials Research Society, Pittsburgh, 1994), Vol. 349,.Google Scholar
10 Niu, C., Lu, Y. Z., and Lieber, C. M., Science 261, 334 (1993).Google Scholar
11 Narayan, J., Reddy, J., Biunno, N., Kanetkar, S. M., Tiwari, P., and Parikh, N., Mater. Science Eng. B26, 49 (1994).Google Scholar
12 Ren, Z. M., Du, Y. C., Ying, Z. F., Qiu, Y. X., Xiong, X. X., Wu, J. D., and Li, F. M., Appl. Phys. Lett. 65, 1361 (1994).Google Scholar
13 Friedmann, T. A., Sullivan, J. P., Siegal, M. P., Tallant, D. R., and Simpson, R. L., in Beam-Solid interactions for Materials Synthesis and Characterization, edited by Luzzi, D. E., Heinz, T. F., Iwaki, M., and Jacobson, D. C. (Materials Research Society, Pittsburgh, 1995), Vol. 354.Google Scholar
14 Siegal, M. J., Friedmann, T. A., Kurtz, S. R., Tallant, D. R., Simpson, R. L., Dominguez, F., and McCarty, K. F., in Novel Forms of Carbon II, edited by Renschler, C. L., Cox, D., Pouch, J., and Achiba, Y. (Materials Research Society, Pittsburgh, 1994), Vol. 349.Google Scholar
15 Friedmann, T. A., Mirkarimi, P. B., Medlin, D. L., McCarty, K. F., Klaus, E. J., Boehme, D. R., Johnsen, H. A., Mills, M. J., Ottesen, D. K., and Barbour, J. C., J. appl. Phys. 76, 3088 (1994).Google Scholar
16 Higashi, G. S., Chabal, Y. J., Trucks, G. W., and Raghavachari, K., Appl. Phys. Lett. 56, 656 (1990).Google Scholar
17 Ramsteiner, M. and Wagner, J., Appl. Phys. Lett. 51, 1355 (1987).Google Scholar
18 Kaufman, J. H., Metin, S., and Saperstein, D. D., Phys. Rev. B 39, 13053 (1989).Google Scholar
19 Han, H. and Feldman, B. J., Solid State Commun. 65, 921 (1988).Google Scholar
20 Doyle, T. E. and Dennison, J. R., Phys. Rev. B 51, 196 (1995).Google Scholar
21 Lifshitz, Y., Lempert, G. D., Growssman, E., Avigal, I., Uzan, C.-Sagay, Kalish, R., Kulik, J., Marton, D., and Rabalais, J. W., To appear in Diamond Relat. Mater. (1995).Google Scholar
22 Amaratunga, G. A. J., Veerasamy, V. S., Davis, C. A., Milne, W. I., McKenzie, D. R., Yuan, J., and Weiler, M., J. Non-Cryst. Solids 164-166, 1119 (1993).Google Scholar