Hostname: page-component-cd9895bd7-gxg78 Total loading time: 0 Render date: 2024-12-27T02:09:46.290Z Has data issue: false hasContentIssue false

Characterization of Buried-Nitride Silicon for Integrated Circuit Applications

Published online by Cambridge University Press:  25 February 2011

D. R. Myers
Affiliation:
Sandia National Laboratories, Albuquerque, NM 87185
H. J. Stein
Affiliation:
Sandia National Laboratories, Albuquerque, NM 87185
S. S. Tsao
Affiliation:
Sandia National Laboratories, Albuquerque, NM 87185
G. W. Arnold
Affiliation:
Sandia National Laboratories, Albuquerque, NM 87185
R. C. Hughes
Affiliation:
Sandia National Laboratories, Albuquerque, NM 87185
W. M. Miller
Affiliation:
Sandia National Laboratories, Albuquerque, NM 87185
R. V. Jones
Affiliation:
Sandia National Laboratories, Albuquerque, NM 87185
A. K. Datye
Affiliation:
Dept. of Chemical and Nuclear Engineering, University of New Mexico, Albuquerque, NM 87131
Get access

Abstract

We have examined the microstructure and the transport properties of nitrogen-implanted silicon-on-insulator wafers, as well as the performance of integrated-circuit transistors fabricated in this material. The insulating regions were fabricated in silicon by the unpatterned implantation of 4×1017 /cm2, 300 keV nitrogen dimers followed by annealing at 1473 K for 5 hours. For these parameters, the buried nitrogen-implanted layer crystallized into α-silicon nitride, and contains ≈20% excess silicon in the form of silicon inclusions of 5–15 nm diameter. The surface silicon layers are characterized by low-mobility, p-type conduction. The buried dielectric has a resistivity of approximately 108 Ωcm. Functional p-channel, integrated circuit transistors have been fabricated in n-type epitaxial silicon grown over the buried-nitride wafers. These transistors devices are similar in performance to those fabricated in bulk silicon,(hole mobilities in inversion layers of 140 cm2/V-s), and demonstrate the suitability of the buried nitride process for integrated circuit applications.

Type
Research Article
Copyright
Copyright © Materials Research Society 1987

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Izumi, K., Omura, Y., and Sakai, T., J. Electronic Materials 12, 845 (1983).Google Scholar
2. Zimmer, G. and Vogt, H., IEEE Trans. El. Dev. ED–30, 1515 (1983).Google Scholar
3. Partridge, S. L., Proc. IEE 133, Pt. I, 66, (1986).Google Scholar
4. Tsaur, B.-Y., Mountain, R. W., Chen, C. K., Turner, C. W., and Fan, J. C. C., IEEE Electron Device Letts. EDL–5, 238 (1984).Google Scholar
5. Tihanyi, J. and Schlotterer, H., Solid-State Electronics 18, 309 (1975).Google Scholar
6. Davis, G. E., Hite, L. R., Blake, T. G. W., Chen, C.-E., Lam, H. W., an DeMoyers, R. Jr., IEEE Trans. Nucl. Science NS–32, 4432 (1985).Google Scholar
7. Kamins, T. I., Marcoux, P. J., Moll, J. L., and Roylance, L. M., J. Appl. Phys. 60, 423 (1986).Google Scholar
8. Nesbit, L., Stiffler, S., Slusser, G., and Vinton, H., J. Electrochem. Soc. 132, 2713 (1985).Google Scholar
9. Spinelli, P., Biasse, B., Jaussaud, C., DePontcharra, J., Soubie, A, and Bruel, B., Nuclear Instrum. Methods B10/11, 501 (1985).Google Scholar
10. Dressendorfer, P. V., Shafer, B. D., Light, R. W., and Dawes, W. R. Jr., J. Radiation Effects: Research and Engineering 2, 347 (1983).Google Scholar
11. Datye, A. K., Tsao, S. S., and Myers, D. R., Proceedings of the 44th Annual Meeting of the Electron Microscopy Society of America, (G. W. Bailey, ed.) San Francisco: The San Francisco Press, 1986 pp. 734–735.Google Scholar
12. Jenkins, M. Wright, J. Electrochem. Soc. 124, 757 (1977).Google Scholar
13. Bourgeuet, P., Dupart, J. M., Tiran, E. Le, Auvray, P., Guivarc'h, A., Salvi, M., Pelous, G., and Henoc, P., J. Appl. Phys. 51, 6169 (1980).Google Scholar
14. Petruzzello, J., McGee, T. F., Frommer, M. H., Rumennik, V., Walters, P. A., and Chou, C. J., J. Appl. Phys. 58, 4605 (1985).Google Scholar
15. Stein, H. J., Oxygen, Carbon, Hydrogen, and Nitrogen in Crystalline Silicon, edited by Mikkelsen, J. C. Jr., Pearton, S. J., Corbett, J. W., and Pennycook, S. J. (The Materials Research Society, Pittsburg, PA, 1986), Vol.59, p. 523 Google Scholar
16. Reeson, K. J., Nucl. Instrum. Methods B19/20, 269 (1987).Google Scholar
17. Belz, J., Kaat, E. H. te, Zimmer, G., and Vogt, H., Nucl. Instrum. Methods B19/20, 279 (1987).Google Scholar
18. Skorupa, W.,Wollschlager, K., Kreissig, U., Grotzschel, R., and Bartsch, H., Nucl. Instrum. Methods B19/20, 285 (1987).Google Scholar
19. Chang, P.-H., Slawinski, C., Mao, B.-Y., and Lam, H. W., J. Appl. Phys. 61, 166 (1987).Google Scholar
20. Stein, H. J., presented at the Electrochemical Society Symposium on Silicon Nitride and Silicon Dioxide Thin Insulating Films, San Diego, CA, 1986. (to be published).Google Scholar
21. Pavlov, P. V., Zorin, E. I., Tetelbaum, D. I., and Khokhlov, A. F., phys. stat. sol. (a) 35, 11 (1976).Google Scholar
22. e. g., MOS Integrated Circuits, edited by Penny, W. M. and Lau, L., (Van Nostrand Reinhold, NY 1972). p 71.Google Scholar