Hostname: page-component-586b7cd67f-rdxmf Total loading time: 0 Render date: 2024-11-25T17:54:33.830Z Has data issue: false hasContentIssue false

Characterization Of Bulk, Polycrystalline Indium Nitride Grown At Sub-Atmospheric Pressures

Published online by Cambridge University Press:  10 February 2011

Jeffrey S. Dycka
Affiliation:
physics Dept Case Western Reserve University, Cleveland, OH 44106
Kathleen Kash
Affiliation:
physics Dept Case Western Reserve University, Cleveland, OH 44106
Kwiseon Kim
Affiliation:
physics Dept Case Western Reserve University, Cleveland, OH 44106
Walter R. L Lambrecht
Affiliation:
physics Dept Case Western Reserve University, Cleveland, OH 44106
Cliff C. Hayman
Affiliation:
Chemical Engineering Dept. Case Western Reserve University, Cleveland, OH 44106
Alberto Argoitia
Affiliation:
Chemical Engineering Dept. Case Western Reserve University, Cleveland, OH 44106
Michael T. Grossner
Affiliation:
Chemical Engineering Dept. Case Western Reserve University, Cleveland, OH 44106
Weilie L. Zhouc
Affiliation:
Materials Science and Engineering Dept. Case Western Reserve University, Cleveland, OH 44106
John C. Angus
Affiliation:
Chemical Engineering Dept. Case Western Reserve University, Cleveland, OH 44106
Get access

Abstract

Polycrystalline, wurtzitic indium nitride was synthesized by saturating indium metal with atomic nitrogen from a microwave plasma source. Plasma synthesis avoids the high equilibrium pressures required when molecular nitrogen is used as the nitrogen source. Two types of growth were observed: 1) small amounts of indium nitride crystallized from the melt during cooling and 2) hexagonal platelets formed adjacent to the In metal source on the crucible sides. The mechanism of this latter growth is not established, but may involve transport of indium as a liquid film. The crystals were characterized by electron diffraction, X-ray diffraction, elemental analysis, scanning electron microscopy, and Raman spectroscopy. Lattice parameter and Raman active phonon modes are reported and compared with calculations based on the full-potential linear muffin-tin orbital method (FP-LMTO).

Type
Research Article
Copyright
Copyright © Materials Research Society 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Bedair, S.M., in Gallium Nitride (GaN) I, edited by Pankove, J.I. and Moustakas, T.D. (Semiconductors and Semimetals Series Vol.50, Academic Press, San Diego, 1998) p. 128 - and references therein.Google Scholar
2. Harrison, W. A., Electronic Structure and the Properties of Solids, (W.H. Freeman and Co., San Francisco, 1980), p. 176.Google Scholar
3. Nakamura, S., Mukai, T., and Senoh, M., J. Appl. Phys. 76, 8189 (1994).10.1063/1.357872Google Scholar
4. Nakamura, S., Senoh, M., Iwasa, N., and Nagahama, S., Jpn. J. Appl. Phys. 34, L797 (1995).10.1143/JJAP.34.L797Google Scholar
5. Grzegory, I., Jun, J., Krukowski, S., Perlin, P., and Porowski, S., Jpn. J. Appl. Phys. 32, Suppl. 32-1, 343 (1993).10.7567/JJAPS.32S1.343Google Scholar
6. Argoitia, A., Hayman, C.C., Angus, J.C., Wang, L., Dyck, J.S., and Kash, K., Appl. Phys. Lett. 70, 179 (1997).10.1063/1.118350Google Scholar
7. Argoitia, A., Hayman, C.C., Angus, J.C., Wang, L., Dyck, J.S., and Kash, K. in II-V Nitrides, edited by Ponce, F.A., Moustakas, T.D., Akasaki, I., and Monemar, B.A. (Mater. Res. Soc. Proc. 449, Pittsburgh, PA, 1996) pp. 4752.Google Scholar
8. Angus, J.C., Argoitia, A., Hayman, C.C., Wang, L., Dyck, J.S., and Kash, K. in Gallium Nitride and Related Materials II, edited by Abernathy, C.R., Amano, H., Zolper, J.C. (Mater. Res. Soc. Proc. 468, Pittsburgh, PA, 1997).Google Scholar
9. Krukowski, S., Witek, A., Adamczyk, J., Jun, J., Bockowski, M., Grzegory, I, Lucznik, B., Nowak, G., Wroblewski, M., Presz, A., Gierlotka, S., Stelmach, S., Palosz, B., and Porowski, S., J. Phys. Chem. Solids, (to be published).Google Scholar
10. Methfessel, M., Phys. Rev. B 38, 1537 (1988).10.1103/PhysRevB.38.1537Google Scholar
11. Kim, K., Lambrecht, W.R.L., and Segall, B., Phys. Rev. B 53, 16310 (1996); Phys. Rev. B 56, 7018 (1997).10.1103/PhysRevB.53.16310Google Scholar
12. Tansley, T.L., Properties of III-V Nitrides, edited by Edgar, J.H., EMIS Datareviews Series, No. 11, INSPEC, (Institution of Electrical Engineers, London, UK, 1994) p. 36.Google Scholar
13. Osamura, K., Naka, S., and Murakami, Y., J. Appl. Phys. 46, 3432 (1975).10.1063/1.322064Google Scholar
14. Inushima, T., Yaguchi, T., Nagase, A., Iso, A., and Shiraishi, T. in Silicon Carbide and Related Materials 1995 edited by Nakashima, S., Matsunami, H., Yoshida, S., and Harima, H. (Inst. Phys. Conf. Ser. 142, Bristol and Philadelphia, 1996), p. 971 Google Scholar
15. Kwon, H., Lee, Y., Miki, O., Yamano, H., and Yoshida, A., Appl. Phys. Lett. 69, 937 (1996).10.1063/1.116949Google Scholar