Hostname: page-component-586b7cd67f-r5fsc Total loading time: 0 Render date: 2024-11-25T18:03:30.052Z Has data issue: false hasContentIssue false

Characterization of B and N Implanted Fused Silica

Published online by Cambridge University Press:  25 February 2011

G. W. Arnold
Affiliation:
Sandia National Laboratories, Albuquerque, NM 87185-5800
R. K. Brow
Affiliation:
Sandia National Laboratories, Albuquerque, NM 87185-5800
M. J. Carr
Affiliation:
Sandia National Laboratories, Albuquerque, NM 87185-5800
J. C. Barbour
Affiliation:
Sandia National Laboratories, Albuquerque, NM 87185-5800
Get access

Abstract

The implantation of B and N into fused silica can result in chemical incorporation into the glass with a consequent larger increase in refractive index than is possible due to volume compaction alone. B implantation produces anomalously large concentrations of oxygen-vacancy defects which aid in the establishment of B into a borosilicate layer. N implants can result in unreacted N accumulations in addition to N incorporated into a Si-oxynitride layer. The unreacted N can also be incorporated by implantation damage (e.g., Si, Ar, Kr)--before or after N implantation--which provides additional occupancy sites. These results are important with respect to the use of implantation-produced waveguides for optoelectronic devices.

Type
Research Article
Copyright
Copyright © Materials Research Society 1990

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1 EerNisse, E. P., J. Appl. Phys. 45, 167 (1974).Google Scholar
2 Webb, A. P., Allen, L., Edgar, B. R., Houghton, A. J., Townsend, P. D., and Pitt, C. W., J. Phys. D: Appl. Phys. 8, 1567 (1975).Google Scholar
3 Webb, A. P. and Townsend, P. D., J. Phys. D: Appl. Phys. 9, 1343 (1976).Google Scholar
4 Wang, C., Tao, Y., and Wang, S., J. Non-Cryst. Solids 52, 589 (1982).Google Scholar
5 Naik, I. K., Appl. Phys. Lett. 43, 519 (1983).Google Scholar
6 Naik, I. K., in Processing of Guided Wave Optoelectronic Materials, edited by Holman, R. L. and Smyth, D. M. (SPIE 460, 1984), p. 56.Google Scholar
7 Wang, C. and Tao, Y., J. Non-Cryst. Solids 21, 397 (1985).Google Scholar
8 Arnold, G. W., Brow, R. K., and Myers, D. R., J. Non-Cryst. Solids (to be published).Google Scholar
9 Tagami, T., Oyoshi, K., and Tanaka, S., Mat. Res. Soc. Symp. Proc. 128, 519 (1959).Google Scholar
10 Arnold, G. W., IEEE Trans. Nucl. Sci. NS-20, 220 (1973).Google Scholar
11 Arnold, G. W., Doyle, B. L., and Bunker, B. C., in Proc. Intl. Symp. on the Nuclear Accelerator Impact in the Interdisciplinary Field, edited by Mazzoldi, P. and Moschini, G. (Laboratori Nazionale di Legnaro (Padova), Italy, 1984), p. 120.Google Scholar
12 Arnold, G. W., Nucl. Instr. and Meth. B32, 268 (1986).Google Scholar
13 Arnold, G. W., in The Physics of SiO2 and its Interfaces, edited by Pantelides, S. T. (Pergamon, New York, 1978), p. 278.Google Scholar