Hostname: page-component-cd9895bd7-dk4vv Total loading time: 0 Render date: 2024-12-27T02:34:18.689Z Has data issue: false hasContentIssue false

Characterization of Au-Mediated a-Si:H Crystallization by In Situ Electrical Measurements

Published online by Cambridge University Press:  21 February 2011

A. A. Pasa
Affiliation:
Inst. f. Phys. Elektronik, Univ. Stuttgart, Pfaffenwaldring 47, D-7000 Stuttgart, FRG
C. A. Achete
Affiliation:
LEMI/COPPE/Universidade Federal do Rio de Janeiro, C.P. 68505, 21945-970 Rio de Janeiro, RJ, Brazil
W. Losch
Affiliation:
LEMI/COPPE/Universidade Federal do Rio de Janeiro, C.P. 68505, 21945-970 Rio de Janeiro, RJ, Brazil
G. H. Bauer
Affiliation:
Inst. f. Phys. Elektronik, Univ. Stuttgart, Pfaffenwaldring 47, D-7000 Stuttgart, FRG
Get access

Abstract

The Au-mediated crystallization of a-Si:H has been investigated by in situ electrical measurements and scanning electron microscopy. The a-Si:H structure was prepared by evaporation of Au thin films of different thicknesses (50 - 600 Å) onto intrinsic glow discharge deposited a-Si:H layers (≈ 5000 Å). A rapid increase in the electrical resistance was associated to the nucleation and growth of Si crystals inside the Au film. The growth process promotes the accumulation of Au at the Si grain boundaries forming a metallic network. This network controls the electric resistance at the end of the crystallization reaction. The kinetics of transformation has been studied by isothermal treatments over the 140 - 180 °C temperature range. An activation energy of 2.1 eV was measured. An analysis of resistance data obtained by constant heating rate treatments suggest the rupture of the network interconnections at T ≥ 170 °C. SEM pictures showing the formation of Au clusters confirmed this suggestion.

Type
Research Article
Copyright
Copyright © Materials Research Society 1993

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Allen, L. H., Mayer, J. W., Tu, K. N., and Feldman, L. C., Phys. Rev. B 41, 8213 (1990).CrossRefGoogle Scholar
2. Konno, T. J., and Sinclair, R., Phil. Mag. B 66, 749 (1992).CrossRefGoogle Scholar
3. Hultman, L., Robertson, A., Hentzell, H., Engström, E., and Psaras, P. A., J. Appl. Phys. 62, 3647 (1987).CrossRefGoogle Scholar
4. Bisaro, R., Magariño, J., Zellana, K., Squelard, S., Germain, P., and Morhange, J. F., Phys. Rev. B 31, 3568 (1985).CrossRefGoogle Scholar
5. Thompson, M. J., Nemanich, R. J., and Tsai, C. C., Surf. Sci. 132, 250 (1983).CrossRefGoogle Scholar
6. Herd, S. R., Chaudhari, P., and Brodsky, M. H., J. Non-Cryst. Solids 11, 309 (1972).CrossRefGoogle Scholar
7. Pasa, A. A., Schubert, M. B., Abel, C. -D., Beyer, W., Losch, W. and Bauer, G. H. in Amorphous Silicon Technology. edited by Thompson, M. J., Hamakawa, Y., LeComber, P. G., Madan, A. and Schiff, E. (Mater. Res. Soc. Proc. 258, San Francisco, CA, 1992), pp. 129134.Google Scholar
8. Köster, U., Campbell, D. R., and Tu, K. N., Thin Solid Films, 53, 129 (1978).CrossRefGoogle Scholar
9. Pasa, A. A., PhD Thesis, Federal University of Rio de Janeiro, 1993.Google Scholar
10. Avrami, M., J. Chem. Phys. 9, 177 (1941).CrossRefGoogle Scholar
11. Christian, J. W., The Theory of Transformations in Metals and Alloys PART I, 2nd ed. (Pergamon Press, Oxford, 1975), p. 19.Google Scholar