Hostname: page-component-7479d7b7d-qs9v7 Total loading time: 0 Render date: 2024-07-08T17:45:46.587Z Has data issue: false hasContentIssue false

Characterization of Ancient Dolomitic Binding Materials from Zamarce, in Navarre (Spain)

Published online by Cambridge University Press:  21 March 2011

C. Montoya
Affiliation:
Dept. of Chemistry and Soil Science, University of Navarra, 31080 Pamplona, Spain.
J. Lanas
Affiliation:
Dept. of Chemistry and Soil Science, University of Navarra, 31080 Pamplona, Spain.
M. Arandigoyen
Affiliation:
Dept. of Chemistry and Soil Science, University of Navarra, 31080 Pamplona, Spain.
I. Navarro
Affiliation:
Dept. of Chemistry and Soil Science, University of Navarra, 31080 Pamplona, Spain.
P.J. García Casado
Affiliation:
Dept. of Chemistry and Soil Science, University of Navarra, 31080 Pamplona, Spain.
J.I. Alvarez
Affiliation:
Dept. of Chemistry and Soil Science, University of Navarra, 31080 Pamplona, Spain.
Get access

Abstract

Ten ancient mortars of dolomitic origin, used in the construction of the church of Santa María de Zamarce in Navarre, Spain, have been studied in order to define their composition and to characterize the type of binder employed. A complete characterization has been carried out including: morphological examination (visually and using optical microscopy); mineralogical studies (X-ray diffraction, XRD); chemical analysis (main components and soluble salts); grain size distribution and thermal studies (thermogravimetric and thermodifferential simultaneous analysis, TGA-DTA). Dolomite and calcite, as binders, and quartz, as aggregate, have been found as the main phases. The important variability of the studied samples has confirmed that the choice of the raw materials and their preparation were not taken carefully. Thermal behavior of the samples has shown the endothermic peaks related to calcite and dolomite decarbonations. No hydromagnesite phases have been detected. Finally, the approximate indications of the original composition of the raw materials mixtures are presented.

Type
Research Article
Copyright
Copyright © Materials Research Society 2002

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Alessandrini, G. Bugini, R. Negrotti, R. and Toniolo, L. Eur. J. Mineral. 3, 619627 (1991).Google Scholar
2. Rodríguez-Navarro, C., Hansen, E. and Ginell, W. S., J. Am. Ceram. Soc. 81 (11), 30323034 (1998).Google Scholar
3. Martínez-Ramírez, S., Puertas, F. Blanco-Varela, M.T. and Thompson, G.E., Cem. Concr. Res. 28 (1), 125133 (1998).Google Scholar
4. Zappia, G. Sabbioni, C. and Pauri, M.G. J. Aerosol. Sci. 23 suppl., S917-S920 (1992).Google Scholar
5. Alvarez, J.I. Navarro, I. Martín, A. and Casado, P.J García, Cem. Concr. Res. 30, 14131419 (2000).Google Scholar
6. Alvarez, J.I. Navarro, I. and Casado, P.J. García, Thermochim. Acta. 365, 177187 (2000).Google Scholar
7. Voïnovitch, I.A., Analyse des sols, roches et ciments (Masson, Paris, 1988).Google Scholar
8. Blanco-Varela, M.T., Puertas, F. Macías, A. and Palomo, A. in 7th International Congress on Deterioration and Conservation of Stone, Lisbon, edited by Rodrigues, J. Delgado, Henriques, F. and Jeremias, F. Telmo, 1992, pp. 12991305.Google Scholar
9. Sarkar, S.L. Cem. Concr. Res. 22, 10111018 (1992).Google Scholar
10. Vecchio, S. Laginestra, A. Frezza, A. and Ferragina, C. Thermochim. Acta. 227, 215223 (1993).Google Scholar
11. Fiori, C. and Macchiarola, M. in III Congreso Internacional de Rehabilitación del Patrimonio Arquitectónico y Edificación, Granada (Espanña), edited by Pardo, E.M. Sebastián, Espinosa, I. Valverde and Zezza, U. 1996, pp. 223237.Google Scholar
12. Bruni, S. Cariati, F. Fermo, P. Cairati, P. Alessandrini, G. and Toniolo, L. Archaeometry 39 (1), 17 (1997).Google Scholar
13. Bruni, S. Cariati, F. Fermo, P. Pozzi, A. and Toniolo, L, Thermochim. Acta. 321, 161165 (1998).Google Scholar
14. Dheilly, R.M. Bouguerra, A. Beaudoin, B. Tudo, J. and Queneudec, M. Mat. Sci. Eng. A – Struct. 268, 127131 (1999).Google Scholar
15. Deloye, F.X. Bull. liaison Labo. P.et Ch. 175, 5965 (1991).Google Scholar
16. Schouenborg, B. Linqvist, J.E. Sandström, H., Sandin, K. and Sidmar, E. in Nordic Seminar on building limes, edited by Swedish National Testing and Research Institute, Building Technology, SP Report 1993: 34, pp. 135.Google Scholar
17. Rassineux, F. Petit, J.C. and Meunier, A. J. Am. Ceram. Soc. 72 (6), 10261032 (1989).Google Scholar
18. United States Department of Agriculture, Natural Resources Conservation Service (1996), edited by Survey, Soil Laboratory Methods Manual. Natl. Sol. Surv. Cent. SSIR 42.Google Scholar
19. Hatakeyama, T. and Liu, Z. Handbook of Thermal Analysis, edited by John Wiley & Sons Ltd, England, 1998.Google Scholar
20. Reller, A. Wilde, P.M. Wiedemann, H.G. Hauptmann, H. and Bonani, G. Mat. Res. Soc. Proc. 267 (1992) 1071011.Google Scholar
21. Webb, T.L. and Krüger, J.E., in Differential Thermal Analysis, edited by Mackenzie, R.C. (Academic Press Inc., London, 1970) pp. 303341.Google Scholar
22. Moropoulou, A. Bakolas, A. and Bisbikou, K. Thermochim. Acta. 269, 779795 (1995).Google Scholar