Hostname: page-component-586b7cd67f-2brh9 Total loading time: 0 Render date: 2024-11-25T15:49:58.575Z Has data issue: false hasContentIssue false

Characterization of AlInAsSb and AlGaInAsSb MBE-grown Digital Alloys

Published online by Cambridge University Press:  11 February 2011

Leslie G. Vaughn
Affiliation:
Center for High Technology Materials, University of New Mexico, 1313 Goddard SE, Albuquerque, NM 87106, U.S.A.
Huifang Xu
Affiliation:
Earth and Planetary Science Department, University of New Mexico, Albuquerque, NM 87131
Yingbing Jiang
Affiliation:
Earth and Planetary Science Department, University of New Mexico, Albuquerque, NM 87131
Luke F. Lester
Affiliation:
Center for High Technology Materials, University of New Mexico, 1313 Goddard SE, Albuquerque, NM 87106, U.S.A.
Get access

Abstract

As one of the few Type I band offset, antimony-based material systems available for 3.3 to 4.2 micron mid-infrared multiple quantum well lasers, AlInAsSb alloys have been used as barriers with InAsSb wells. Previously, AlxIn(1-x)AsySb(1-y) quaternary alloys have been grown by MBE as random alloys up to an aluminum fraction, x = 0.10 on GaSb substrates and x = 0.15 on InAs substrates. Random alloy growth of quaternary films with increased aluminum content, although beneficial to the devices, is limited by a miscibility gap. We have used a digital alloy technique to grow stable, single phase, GaSb lattice-matched, optically smooth quaternary alloys for aluminum fractions of 0.05 to 0.5, well into the miscibility gap. DCXRD results show FWHM of 0th order alloy peaks are within 1.5 to 2 times that of the highly crystalline GaSb substrates and have well defined thickness fringes corresponding to the total film thickness and the digital alloy period. TEM images show very well ordered alloys with characteristic ultrathin superlattice structure having smooth interfaces, very little strain and atomic ordering limited to that imposed by the digital alloy technique. Photoluminescence measurements are used to fit a model for bandgap prediction from known alloy compositions. Theoretical studies have predicted that the addition of a fifth element, gallium, may help suppress Auger recombination through its effects on the subband structure. So, gallium is added to the quaternary to produce a quinternary alloy lattice-matched to GaSb. These AlGaInAsSb alloys have DCXRD and TEM results similar to the quaternary. The stable, single-phase growth of these quinternary alloys across the composition range is promising for improving the operating characteristics of mid-IR lasers.

Type
Research Article
Copyright
Copyright © Materials Research Society 2003

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Flatte, M. E., Olesberg, J. T., Anson, S. A., Boggess, T. F., Hasenberg, T. C., Miles, R. H. and Grein, C. H., Appl. Phys. Lett. 70, 3212 (1997).Google Scholar
2. Coldren, L. A. and Corzine, S. W., in Diode Lasers and Photonic Integrated Circuits, (John Wiley & Sons, Inc., New York, 1995), p. 532.Google Scholar
3. Choi, H. K. and Turner, G. W., Appl. Phys. Lett. 67, 332 (1995).Google Scholar
4. Choi, H. K., Turner, G. W., Manfra, M. J. and Connors, M. K., Appl. Phys. Lett. 68, 2936 (1996).Google Scholar
5. Turner, G. W., Manfra, M. J., Choi, H. K. and Connors, M. K., J. Crystal Growth 175/176, 825 (1997).Google Scholar
6. Kudo, M. and Mishima, T., J. Crystal Growth 175, 844 (1997).Google Scholar
7. Washington, D., Hogan, T., Chow, P., Golding, T., Littler, C. and Kirschbaum, U., J. Vac. Sci. Technol. B 16, 1385 (1998).Google Scholar
8. Chang, J. R., Su, Y. K., Jaw, D. H., Shiao, H. P., Lin, W., J. Crystal Growth 203, 481 (1999).Google Scholar
9. Seong, T. Y., Norman, A. G., Ferguson, I. T. and Booker, G. R., J. Appl. Phys. 73, 8227 (1993).Google Scholar
10. Kurtz, S. R. and Biefeld, R. M., Appl. Phys. Lett. 66, 364 (1995).Google Scholar
11. Kurtz, S. R., Biefeld, R. M. and Dawson, L. R., Phys. Rev. B 51, 7310 (1995).Google Scholar
12. Kurtz, S. R., Biefeld, R. M. and Howard, A. J., Appl. Phys. Lett 67, 3331 (1995).Google Scholar
13. Schmitz, J., Wagner, J., Fuchs, F., Herres, N., Koidl, P., Ralston, J. G., J. Cryst. Growth 150, 858 (1995).Google Scholar
14. Yano, M., Utatsu, T., Iwai, Y., Inoue, M., J. Cryst. Growth 150, 868 (1995).Google Scholar
15. Bennett, B. R., Shanabrook, B. V. and Twigg, M. E., J. Appl. Phys. 85, 2157 (1999).Google Scholar
16. Moon, R. L., Antypas, G. A. and James, L. W., J. Electron. Mater. 3, 635 (1974).Google Scholar
17. Kuan, T. S., Wang, W. I. and Wilkie, E. L., Appl. Phys. Lett. 51, 51 (1987).Google Scholar
18. Murgatroyd, I. J., Norman, A. G. and Booker, G. R., J. Appl. Phys. 67, 2310 (1990).Google Scholar
19. Ihm, Y. E., Otsuka, N., Klem, J. F. and Morkoc, H., Appl. Phys. Lett. 51, 2013 (1987).Google Scholar