Hostname: page-component-586b7cd67f-t7czq Total loading time: 0 Render date: 2024-11-29T09:31:26.615Z Has data issue: false hasContentIssue false

Characterization of AlGaAs/GaAs Heterojunction Bipolar Transistors Using Photoreflectance and Spectral Ellipsometry

Published online by Cambridge University Press:  15 February 2011

Patricia B. Smith
Affiliation:
Texas Instruments Incorporated Materials Science Laboratory, Dallas, TX 75265
Tae S. Kim
Affiliation:
Texas Instruments Incorporated Materials Science Laboratory, Dallas, TX 75265
Lissa K. Magel
Affiliation:
Texas Instruments Incorporated Materials Science Laboratory, Dallas, TX 75265
Walter M. Duncan
Affiliation:
Texas Instruments Incorporated Materials Science Laboratory, Dallas, TX 75265
A. Vance Ley
Affiliation:
Defense Systems and Electronics Group, Garland, TX 75041
Nick A. Brette
Affiliation:
Defense Systems and Electronics Group, Dallas, TX 75265
Get access

Abstract

Photoreflectance spectroscopy (PR) and spectral ellipsometry (SE) have been used to characterize the doping and structure of heterojunction bipolar transistors (HBT). This information provides a more complete description of the epitaxial HBT structure than is possible by relying solely on electrical characterization of specially processed test structures. Additional benefit is derived from the nondestructive nature of both SE and PR. The measurements are fast enough to be implemented on all production-bound HBT material. We describe our recent results comparing capacitance-voltage measurements with PRderived doping levels in the emitter layer of the HBT. We also describe some work comparing SE fit results with Auger electron spectroscopy depth profiles for InGaAs contact layer composition and thickness.

Type
Research Article
Copyright
Copyright © Materials Research Society 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Smith, P. B., Allerman, A. A. and Duncan, W. M., in Semiconductor Characterization: Present Status and Future Needs, Eds. Bullis, W. M., Seller, D. G. and Diebold, A., (American Institute of Physics, Woodbury, New York, 1996), pp. 678682.Google Scholar
2. Shay, J. L., Phys. Rev. B, 2, pp. 803807, (1970).Google Scholar
3. Pollak, F. H., Krystek, W., Leibovitch, M., Qiang, H., Streit, D. C. and Wojtowicz, M., in Semiconductor Characterization: Present Status and Future Needs, Eds. Bullis, W. M., Seiler, D. G. and Diebold, A., (American Institute of Physics, Woodbury, New York, 1996), pp. 669672.Google Scholar
4. Smith, P. B., Duncan, W. M. and Allerman, A. A., accepted for publication in IEEE Journal of Quantum Electronics.Google Scholar
5. Smith, P. B., Duncan, W. M., Allerman, A. A. and Kim, T. S., in Proceedings of the Symposium on Nondestructive Wafer Characterization for Compound Semiconductor Materials and the Twenty-Second State of the Art Program on Compound Semiconductors (SOTAPOCS XXII), Eds. Malhotra, V., Swaminathan, V., Chu, S. N. G., Salviati, G., Ren, F., Daele, P. Van and Kamijoh, T., (The Electrochemical Society, Inc., Pennington, NJ, 1995), Proceedings Volume 95–6, pp. 336348.Google Scholar
6. Pickering, C., Carline, R. T., Emeny, M. T., Garawal, N. and Howard, L. K., Appl. Phys. Lett. 60, pp. 24122414, (1992).Google Scholar
7. Alterovitz, S. A., Sieg, R. E., Yao, H. D., Snyder, P. G., Woollam, J. A., Pamulapati, J., Bhattacharya, P. K. and Sekula-Moise, P. A., in Proceedings of the Second International Conference on Electronic Materials, Eds. T. Sugano, R. P. H. Chang, H. Kamimura, I. Hayashi, and T. Kamiya. Volume ICEM-2, (1991), pp. 187192.Google Scholar
8. Palik, E. D., Ed., Handbook of Optical Constants of Solids, (Academic Press, 1985); and G. E. Jellison Jr., Optical Materials 1, pp. 151–160, (1992).Google Scholar
9. Aspnes, D. E., Kelso, S. M., Logan, R. A. and Bhat, R., J. Appl. Phys., 60, pp. 754767, (1986).Google Scholar