Hostname: page-component-78c5997874-mlc7c Total loading time: 0 Render date: 2024-11-20T00:06:41.331Z Has data issue: false hasContentIssue false

Characterization of Ag/cdo Interfaces by Hrem

Published online by Cambridge University Press:  26 February 2011

G. Necker
Affiliation:
Max-Planck-Institut für Metallforschung, Institut für Werkstoffwissenschaften, Stuttgart, Federal Republic of Germany
W. Mader
Affiliation:
Max-Planck-Institut für Metallforschung, Institut für Werkstoffwissenschaften, Stuttgart, Federal Republic of Germany
Get access

Abstract

Ag-Cd alloys have been internally oxidized to produce CdO precipitates which have a cube-on-cube orientation relationship with respect to the Ag matrix. Electron microscopy studies revealed that the Ag/CdO interfaces are incoherent which can be explainedby the presumably weak bonding forces across the interface and the large lattice misfit. A comparison of experimentally observed lattice images with computer simulated ones based on different interfacial structure models shows that an oxygen plane forms the terminating layer on the oxide side even at interfacial steps. This result is supported by thermodynamic considerations.

Type
Research Article
Copyright
Copyright © Materials Research Society 1988

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Gibbs, J.W., The Collected Work of J. Willard Gibbs, Vol.1 (Longmans, Green and Co., New York, 1928).Google Scholar
2. Wagner, C., Z. Elektrochem. 63, 772 (1959).Google Scholar
3. Meijering, J.L., in Advances in Materials Research, Vol. 5, edited by Herman, H. (J. Wiley & Sons Inc., New York, 1971), pp. 181.Google Scholar
4. Mahajan, S. and Himmel, L., Acta metall. 20, 1313 (1962).Google Scholar
5. Pedder, D.J., Met. Trans. A 9, 659 (1978).Google Scholar
6. Krakow, W., Wetzel, J.T. and Smith, D.A., Phil. Mag. A 53, 739 (1986).Google Scholar
7. Stadelman, P.A., Ultramicroscopy 21, 131 (1987).Google Scholar
8. Bollmann, W., Crystal Defects and Crystalline Interfaces, (Springer, Berlin, Heidelberg, New York, 1970).Google Scholar
9. Mader, Mat. Res. Soc. Proc. 82, 403 (1986).Google Scholar
10. Koňák, Č., Höschl, P., Dillinger, J. and Prosser, V., in Crystal Growth, Supplem. to Physics and Chemistry of Solids, edited by Peiser, H.S. (Pergamon Press, Oxford, 1967), p. 341.Google Scholar
11. Huang, X.Y., Mader, W., Eastman, J.A. and Kirchheim, R., Scripta metall. (1988), in press.Google Scholar
12. Kubaschewski, O. and Alcock, C.B., Metallurgical Thermochemistry, 5th ed. by Raynor, G.V. (Pergamon Press, Oxford, 1979).Google Scholar
13. Eichenauer, W. and Miller, G., Z. Metallkde. 53, 321 (1962).Google Scholar
14. Hultgren, R., Desai, P.D., Hawkins, D.T., Gleiser, M. and Kelley, K.K., Selected Values of Thermodynamic Properties of Binary Alloys (American Society for Metals, Metals Park, Ohio, 1973).Google Scholar