Hostname: page-component-cd9895bd7-gvvz8 Total loading time: 0 Render date: 2024-12-27T02:00:19.302Z Has data issue: false hasContentIssue false

Characterization of a Micro Capillary Zone Electrophoresis System With Integrated Amorphous Silicon Based Optical Detectors

Published online by Cambridge University Press:  01 February 2011

Lars Schöler
Affiliation:
[email protected], University of Siegen, Institute for Microsystem Technologies, Hölderlinstr. 3, Siegen, N/A, Germany
Konstantin Seibel
Affiliation:
[email protected], University of Siegen, Institute for Microsystem Technologies, Hölderlinstr. 3, Siegen, N/A, Germany
Heiko Schäfer
Affiliation:
[email protected], University of Siegen, Institute for Microsystem Technologies, Hölderlinstr. 3, Siegen, N/A, Germany
René Johannes Püschl
Affiliation:
[email protected], University of Siegen, Analytical Chemistry, Adolf Reichwein Str. 2-4, Siegen, N/A, Germany
Bernd Wenclawiak
Affiliation:
[email protected], University of Siegen, Analytical Chemistry, Adolf Reichwein Str. 2-4, Siegen, N/A, Germany
Markus Böhm
Affiliation:
[email protected], University of Siegen, Institute for Microsystem Technologies, Hölderlinstr. 3, Siegen, N/A, Germany
Get access

Abstract

Application specific Lab-on-Microchips (ALMs) making use of the combination of complex microfluidic networks with microelectronic circuits and micro optical components allow the realization of miniaturized application specific biological and chemical processing and analysis devices. Fluorescence sensing is one of the most widely used detection technologies, e.g. for DNA fluorescence labelling in Micro Capillary Electrophoresis (µCE) due to its superior sensitivity and specificity. Unfortunately, commercially available fluorescence sensing systems are physically very large, non portable, expensive and constrain the analysis in portable diagnostic and medical care. Integrated semiconductor optoelectronic devices can provide a portable, parallel and inexpensive solution for on chip fluorescence sensing.

Most µCE applications working in the spectral range of visible light. For the integration of optical detection components a photon energy range of 1.6 eV - 3.1 eV is of interest. The a-Si:H technology accomplished due to the low dark current and high absorption coefficient against to crystalline silicon the requirements in that spectral range. In this paper we combine a:Si-H photo sensors with a fluidic micro system to detect the fluorescence of a rhodamine analyte mixture. The analyte mixture was excited by light with a wavelength in the range of λEx = 450 - 490 nm. The a-Si:H detector reveals a low dark current density on the order of 10-10 A/cm2 and a sufficient dynamic range of ∼100 dB under illumination of ∼1000 lx as a function of bias voltage. The measurement shows that the movement of the rhodamine plug in the microchannel causes a significant rise in the pin-diode photo current, which correlates to the evaluated signal of a microscope image detector. The photo current difference for excitation and additional fluorescence amounts to 2.4 µA.

Type
Research Article
Copyright
Copyright © Materials Research Society 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Manz, A., Graber, N., Widmer, H. M., Sensors and Actuators B, 1, 244248 (1990).Google Scholar
2. Wang, S. L., Fan, X. F., Xu, Z. R., Fang, Z. L., Electrophoresis, 26, 36023608 (2005).Google Scholar
3. Veledo, M. T., Frutos, M. de, Diez-Masa, J. C., Electrophoresis, 27, 31013107 (2006).Google Scholar
4. Schneider, B., Rieve, P., Böhm, M., Handbook of Computer Vision and Applications, Academic Press, Boston, 237270 (1999).Google Scholar
5. Benthien, S., Lulé, T., Schneider, B., Wagner, M., Verhoeven, M., Böhm, M., IEEE Journal of Solid State Circuits, 35(7), 939945 (2000).Google Scholar
6. Verpoorte, E., Lab on a Chip 3, 42N52N (2003).Google Scholar
7. Mogensen, K. B., Klank, H., Kutter, J. P., Electrophoresis, 25, 34983512 (2004).Google Scholar
8. Kamei, T., Paegel, B. M., R, J.. Scherer, Skelley, A. M., Street, R. A. and Mathies, R. A., Anal. Chem., 75, 53005305 (2003).Google Scholar
9. Namasivayam, V., Lin, R., Johnson, B., Brahmasandra, S., Razzacki, Z., Burke, D. T. and Burns, M. A., J. Micromech. Microeng., 14, 8190 (2004).Google Scholar
10. Soper, S. A., Legendre, B. L. Jr, Williams, D. C., Anal. Chem., 67, 43584365. N. M. Schultz, R. T. Kennedy, Anal. Chem., 65, 3161-3165 (1993).Google Scholar
11. Schultz, N. M., Kennedy, R. T., Anal. Chem., 65, 31613165 (1993).Google Scholar
12. Zhu, Q., Coors, S., Schneider, B., Rieve, P., and Böhm, M., IEEE Transaction on Electron Devices, vol. 45, No. 7, 13931398 (1998).Google Scholar
13. Rieve, P., Giehl, J., Zhu, Q. and Böhm, M., Materials Research Society Spring Meeting, San Francisco, vol. 420, pp. 135140, April 8-12, (1996).Google Scholar
14. Sikanen, T., Tuomikoski, S., Ketola, R. A., Kostiainen, R., Franssila, S. and Kotiaho, T., Lab on chip, 888896 (2005).Google Scholar
15. Seibel, K., Schöler, L., Walder, M., Schäfer, H., Schäfer, A., Pletzer, T., Püschl, R., Waidelich, M., Ihmels, H., Ehrhardt, D., and Böhm, M. in Materials, Integration and Technology for Monolithic Instruments, edited by Theil, J., Böhm, M., Gardner, D., Blalock, T., (Mater. Res. Soc. Symp. Proc. 869, Warrendale, PA, 2005) pp. 119124.Google Scholar
16. Lulé, T., Benthien, S., Keller, H., Mütze, F., Rieve, P., Seibel, K., Sommer, M. and Böhm, M., IEEE Transaction on Electron Devices, vol. 47, No. 11, 21102122 (2000).Google Scholar