Hostname: page-component-586b7cd67f-g8jcs Total loading time: 0 Render date: 2024-11-25T16:56:18.707Z Has data issue: false hasContentIssue false

Characterization of a Ag Monolayer on Pt by Surface Enhanced Raman Scattering

Published online by Cambridge University Press:  25 February 2011

Joseph Miragliotta
Affiliation:
Physics Department Colorado School of Mines Golden, CO 80401
T. E. Furtak
Affiliation:
Physics Department Colorado School of Mines Golden, CO 80401
Get access

Abstract

We report the results of a surface enhanced Raman scattering investigation of a Ag monolayer (ML) electrochemically deposited on a Pt substrate. The poor electromagnetic enhancing properties of this surface insure that the observed Raman scattering intensity is short–range in origin, arising from an electronic resonant process between the surface adatom and the probe molecule. Raman spectra showed the probe molecule, pyridine, to be bound to an electron-deficient Ag site. This supports earlier vacuum studies of the Ag/Pt surface which reported an electron transfer from the Ag ML into the Pt substrate leaving a partial positive charge in the ML. The transfer is due to the work function difference between Ag and Pt.

Type
Research Article
Copyright
Copyright © Materials Research Society 1987

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Herz, R.K., Gillespie, W.D., Peterson, E.E., Somorjai, G.A., J. Catal. 67, 371 (1981).Google Scholar
2. Lang, M.D. and Williams, A.R., Phys. Rev. B 18, 616 (1978).Google Scholar
3. Messmer, R.P., Surf. Sci. 158, 40 (1985).Google Scholar
4. Kolb, D.M. and Kotz, R., Surf. Sci. 67, 698 (1977).Google Scholar
5. McIntyre, J.D.E. and Aspnes, D.E., Surf. Sci. 24, 417 (1971).Google Scholar
6. Furtak, T.E. and Miragliotta, J., Surf. Sci. 167, 381 (1986).Google Scholar
7. Furtak, T.E. and Miragliotta, J., Phys. Rev. B (in press).Google Scholar
8. Kolb, D.M., Przasnyski, M., Gerischer, H., J. Electroanal. Chem. 54, 25 (1974).Google Scholar
9. Gersten, J. and Nitzan, A., J. Chem. Phys. 73, 3023 (1980).Google Scholar
10. Macomber, S.H. and Furtak, T.E., Chem. Phys. Lett. 90, 59 (1982).Google Scholar
11. Miragliotta, J. and Furtak, T.E., Phys. Rev. B (in press).Google Scholar
12. Hammond, J.S. and Winograd, N., J. Electroanal. Chem. 80, 133 (1977).Google Scholar
13. Cadle, S.H. and Bruckenstein, S., Anal. Chem. 44, 1993 (1972).Google Scholar
14. Barrados, R.G., Fletcher, S., Szabo, S., Can. J. Chem. 56, 2029 (1978).Google Scholar
15. Owen, J.F., Chen, T.T., Chang, R.K., Laube, B.L., Surf. Sci. 131, 195 (1983).Google Scholar
16. Salmeron, M., Ferrer, S., Jazzar, M., Somorjai, G.A., Phys. Rev. B 28, 6758 (1983).Google Scholar
17. Hendra, P.J., Horder, J.R., Loader, E.J., J. Chem. Soc. (A), 1766 (1971).Google Scholar
18. King, F.W., Duyne, R.P. Van, Schatz, G.C., J. Chem. Phys. 69, 4472 (1978).Google Scholar
19. Shek, M.L., Stefan, P.M., Lindau, D., Spicer, W.E., Phys. Rev. B 27, 7277 (1983).Google Scholar